test_scannet_dataset.py 5.31 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
import numpy as np
yinchimaoliang's avatar
yinchimaoliang committed
2
import pytest
yinchimaoliang's avatar
yinchimaoliang committed
3
import torch
yinchimaoliang's avatar
yinchimaoliang committed
4

5
from mmdet3d.datasets import ScanNetDataset
yinchimaoliang's avatar
yinchimaoliang committed
6
7
8
9


def test_getitem():
    np.random.seed(0)
10
    root_path = './tests/data/scannet/scannet_train_instance_data'
yinchimaoliang's avatar
yinchimaoliang committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
    ann_file = './tests/data/scannet/scannet_infos.pkl'
    class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                   'window', 'bookshelf', 'picture', 'counter', 'desk',
                   'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                   'sink', 'bathtub', 'garbagebin')
    pipelines = [
        dict(
            type='IndoorLoadPointsFromFile',
            use_height=True,
            load_dim=6,
            use_dim=[0, 1, 2]),
        dict(type='IndoorLoadAnnotations3D'),
        dict(type='IndoorPointSample', num_points=5),
        dict(type='IndoorFlipData', flip_ratio_yz=1.0, flip_ratio_xz=1.0),
        dict(
            type='IndoorGlobalRotScale',
            use_height=True,
            rot_range=[-np.pi * 1 / 36, np.pi * 1 / 36],
            scale_range=None),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D',
            keys=[
                'points', 'gt_bboxes_3d', 'gt_labels', 'pts_semantic_mask',
                'pts_instance_mask'
            ]),
    ]

39
    scannet_dataset = ScanNetDataset(root_path, ann_file, pipelines)
yinchimaoliang's avatar
yinchimaoliang committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    data = scannet_dataset[0]
    points = data['points']._data
    gt_bboxes_3d = data['gt_bboxes_3d']._data
    gt_labels = data['gt_labels']._data
    pts_semantic_mask = data['pts_semantic_mask']
    pts_instance_mask = data['pts_instance_mask']

    expected_points = np.array(
        [[-2.9078157, -1.9569951, 2.3543026, 2.389488],
         [-0.71360034, -3.4359822, 2.1330001, 2.1681855],
         [-1.332374, 1.474838, -0.04405887, -0.00887359],
         [2.1336637, -1.3265059, -0.02880373, 0.00638155],
         [0.43895668, -3.0259454, 1.5560012, 1.5911865]])
    expected_gt_bboxes_3d = np.array([
        [-1.5005362, -3.512584, 1.8565295, 1.7457027, 0.24149807, 0.57235193],
        [-2.8848705, 3.4961755, 1.5268247, 0.66170084, 0.17433672, 0.67153597],
        [-1.1585636, -2.192365, 0.61649567, 0.5557011, 2.5375574, 1.2144762],
        [-2.930457, -2.4856408, 0.9722377, 0.6270478, 1.8461524, 0.28697443],
        [3.3114715, -0.00476722, 1.0712197, 0.46191898, 3.8605113, 2.1603441]
    ])
    expected_gt_labels = np.array([
        6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0, 0, 0,
        0, 0, 0, 5, 5, 5
    ])
    expected_pts_semantic_mask = np.array([3, 1, 2, 2, 15])
    expected_pts_instance_mask = np.array([44, 22, 10, 10, 57])

    assert np.allclose(points, expected_points)
    assert gt_bboxes_3d[:5].shape == (5, 6)
    assert np.allclose(gt_bboxes_3d[:5], expected_gt_bboxes_3d)
    assert np.all(gt_labels.numpy() == expected_gt_labels)
    assert np.all(pts_semantic_mask == expected_pts_semantic_mask)
    assert np.all(pts_instance_mask == expected_pts_instance_mask)
yinchimaoliang's avatar
yinchimaoliang committed
73
74
75


def test_evaluate():
yinchimaoliang's avatar
yinchimaoliang committed
76
77
    if not torch.cuda.is_available():
        pytest.skip()
yinchimaoliang's avatar
yinchimaoliang committed
78
79
    root_path = './tests/data/scannet'
    ann_file = './tests/data/scannet/scannet_infos.pkl'
80
    scannet_dataset = ScanNetDataset(root_path, ann_file)
yinchimaoliang's avatar
yinchimaoliang committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    results = []
    pred_boxes = dict()
    pred_boxes['box3d_lidar'] = np.array([[
        3.52074146e+00, -1.48129511e+00, 1.57035351e+00, 2.31956959e-01,
        1.74445975e+00, 5.72351933e-01, 0
    ],
                                          [
                                              -3.48033905e+00, -2.90395617e+00,
                                              1.19105673e+00, 1.70723915e-01,
                                              6.60776615e-01, 6.71535969e-01, 0
                                          ],
                                          [
                                              2.19867110e+00, -1.14655101e+00,
                                              9.25755501e-03, 2.53463078e+00,
                                              5.41841269e-01, 1.21447623e+00, 0
                                          ],
                                          [
                                              2.50163722, -2.91681337,
                                              0.82875049, 1.84280431,
                                              0.61697435, 0.28697443, 0
                                          ],
                                          [
                                              -0.01335114, 3.3114481,
                                              -0.00895238, 3.85815716,
                                              0.44081616, 2.16034412, 0
                                          ]])
    pred_boxes['label_preds'] = torch.Tensor([6, 6, 4, 9, 11]).cuda()
    pred_boxes['scores'] = torch.Tensor([0.5, 1.0, 1.0, 1.0, 1.0]).cuda()
    results.append([pred_boxes])
liyinhao's avatar
liyinhao committed
110
    metric = [0.25, 0.5]
liyinhao's avatar
liyinhao committed
111
    ret_dict = scannet_dataset.evaluate(results, metric)
liyinhao's avatar
liyinhao committed
112
113
114
115
    table_average_precision_25 = ret_dict['table_AP_0.25']
    window_average_precision_25 = ret_dict['window_AP_0.25']
    counter_average_precision_25 = ret_dict['counter_AP_0.25']
    curtain_average_precision_25 = ret_dict['curtain_AP_0.25']
yinchimaoliang's avatar
yinchimaoliang committed
116
117
118
119
    assert abs(table_average_precision_25 - 0.3333) < 0.01
    assert abs(window_average_precision_25 - 1) < 0.01
    assert abs(counter_average_precision_25 - 1) < 0.01
    assert abs(curtain_average_precision_25 - 0.5) < 0.01