scannet-seg.py 5.05 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
# For ScanNet seg we usually do 20-class segmentation
2
3
4
5
class_names = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
               'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
               'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
               'bathtub', 'otherfurniture')
6
metainfo = dict(classes=class_names)
ZCMax's avatar
ZCMax committed
7
8
9
10
11
12
13
14
dataset_type = 'ScanNetSegDataset'
data_root = 'data/scannet/'
input_modality = dict(use_lidar=True, use_camera=False)
data_prefix = dict(
    pts='points',
    pts_instance_mask='instance_mask',
    pts_semantic_mask='semantic_mask')

15
16
17
18
19
20
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/scannet/'

Jingwei Zhang's avatar
Jingwei Zhang committed
21
# Method 2: Use backend_args, file_client_args in versions before 1.1.0
22
# backend_args = dict(
ZCMax's avatar
ZCMax committed
23
24
#     backend='petrel',
#     path_mapping=dict({
25
26
27
28
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None
ZCMax's avatar
ZCMax committed
29

30
31
32
33
34
35
36
37
num_points = 8192
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=True,
        load_dim=6,
38
39
        use_dim=[0, 1, 2, 3, 4, 5],
        backend_args=backend_args),
40
41
42
43
44
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_mask_3d=False,
45
46
        with_seg_3d=True,
        backend_args=backend_args),
ZCMax's avatar
ZCMax committed
47
    dict(type='PointSegClassMapping'),
48
49
50
51
52
    dict(
        type='IndoorPatchPointSample',
        num_points=num_points,
        block_size=1.5,
        ignore_index=len(class_names),
53
54
55
        use_normalized_coord=False,
        enlarge_size=0.2,
        min_unique_num=None),
56
    dict(type='NormalizePointsColor', color_mean=None),
ZCMax's avatar
ZCMax committed
57
    dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
58
59
60
61
62
63
64
65
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=True,
        load_dim=6,
66
67
        use_dim=[0, 1, 2, 3, 4, 5],
        backend_args=backend_args),
ChaimZhu's avatar
ChaimZhu committed
68
69
70
71
72
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_mask_3d=False,
73
74
        with_seg_3d=True,
        backend_args=backend_args),
75
    dict(type='NormalizePointsColor', color_mean=None),
ZCMax's avatar
ZCMax committed
76
    dict(type='Pack3DDetInputs', keys=['points'])
77
]
78
79
80
81
82
83
84
85
86
87
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
# we need to load gt seg_mask!
eval_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=True,
        load_dim=6,
88
89
        use_dim=[0, 1, 2, 3, 4, 5],
        backend_args=backend_args),
ZCMax's avatar
ZCMax committed
90
91
    dict(type='NormalizePointsColor', color_mean=None),
    dict(type='Pack3DDetInputs', keys=['points'])
92
]
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
tta_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=False,
        use_color=True,
        load_dim=6,
        use_dim=[0, 1, 2, 3, 4, 5],
        backend_args=backend_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=False,
        with_label_3d=False,
        with_mask_3d=False,
        with_seg_3d=True,
        backend_args=backend_args),
    dict(type='NormalizePointsColor', color_mean=None),
    dict(
        type='TestTimeAug',
        transforms=[[
            dict(
                type='RandomFlip3D',
                sync_2d=False,
                flip_ratio_bev_horizontal=0.,
                flip_ratio_bev_vertical=0.)
        ], [dict(type='Pack3DDetInputs', keys=['points'])]])
]
120

ZCMax's avatar
ZCMax committed
121
122
123
124
125
126
train_dataloader = dict(
    batch_size=8,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
127
128
        type=dataset_type,
        data_root=data_root,
ZCMax's avatar
ZCMax committed
129
130
131
        ann_file='scannet_infos_train.pkl',
        metainfo=metainfo,
        data_prefix=data_prefix,
132
        pipeline=train_pipeline,
ZCMax's avatar
ZCMax committed
133
        modality=input_modality,
134
        ignore_index=len(class_names),
ZCMax's avatar
ZCMax committed
135
        scene_idxs=data_root + 'seg_info/train_resampled_scene_idxs.npy',
136
137
        test_mode=False,
        backend_args=backend_args))
ZCMax's avatar
ZCMax committed
138
139
140
141
142
143
144
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
145
146
        type=dataset_type,
        data_root=data_root,
ZCMax's avatar
ZCMax committed
147
148
149
        ann_file='scannet_infos_val.pkl',
        metainfo=metainfo,
        data_prefix=data_prefix,
150
        pipeline=test_pipeline,
ZCMax's avatar
ZCMax committed
151
152
        modality=input_modality,
        ignore_index=len(class_names),
153
154
        test_mode=True,
        backend_args=backend_args))
ZCMax's avatar
ZCMax committed
155
val_dataloader = test_dataloader
156

ZCMax's avatar
ZCMax committed
157
158
val_evaluator = dict(type='SegMetric')
test_evaluator = val_evaluator
159
160
161
162

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')
163
164

tta_model = dict(type='Seg3DTTAModel')