test_merge_augs.py 2.86 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
yinchimaoliang's avatar
yinchimaoliang committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import mmcv
import pytest
import torch

from mmdet3d.core import merge_aug_bboxes_3d
from mmdet3d.core.bbox import DepthInstance3DBoxes


def test_merge_aug_bboxes_3d():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    img_meta_0 = dict(
        pcd_horizontal_flip=False,
        pcd_vertical_flip=True,
        pcd_scale_factor=1.0)
    img_meta_1 = dict(
        pcd_horizontal_flip=True,
        pcd_vertical_flip=False,
        pcd_scale_factor=1.0)
    img_meta_2 = dict(
        pcd_horizontal_flip=False,
        pcd_vertical_flip=False,
        pcd_scale_factor=0.5)
    img_metas = [[img_meta_0], [img_meta_1], [img_meta_2]]
    boxes_3d = DepthInstance3DBoxes(
        torch.tensor(
            [[1.0473, 4.1687, -1.2317, 2.3021, 1.8876, 1.9696, 1.6956],
             [2.5831, 4.8117, -1.2733, 0.5852, 0.8832, 0.9733, 1.6500],
             [-1.0864, 1.9045, -1.2000, 0.7128, 1.5631, 2.1045, 0.1022]],
            device='cuda'))
32
33
34
35
36
37
38
39
40
41
42
    labels_3d = torch.tensor([0, 7, 6], device='cuda')
    scores_3d_1 = torch.tensor([0.3, 0.6, 0.9], device='cuda')
    scores_3d_2 = torch.tensor([0.2, 0.5, 0.8], device='cuda')
    scores_3d_3 = torch.tensor([0.1, 0.4, 0.7], device='cuda')
    aug_result_1 = dict(
        boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d_1)
    aug_result_2 = dict(
        boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d_2)
    aug_result_3 = dict(
        boxes_3d=boxes_3d, labels_3d=labels_3d, scores_3d=scores_3d_3)
    aug_results = [aug_result_1, aug_result_2, aug_result_3]
yinchimaoliang's avatar
yinchimaoliang committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    test_cfg = mmcv.ConfigDict(
        use_rotate_nms=True,
        nms_across_levels=False,
        nms_thr=0.01,
        score_thr=0.1,
        min_bbox_size=0,
        nms_pre=100,
        max_num=50)
    results = merge_aug_bboxes_3d(aug_results, img_metas, test_cfg)
    expected_boxes_3d = torch.tensor(
        [[-1.0864, -1.9045, -1.2000, 0.7128, 1.5631, 2.1045, -0.1022],
         [1.0864, 1.9045, -1.2000, 0.7128, 1.5631, 2.1045, 3.0394],
         [-2.1728, 3.8090, -2.4000, 1.4256, 3.1262, 4.2090, 0.1022],
         [2.5831, -4.8117, -1.2733, 0.5852, 0.8832, 0.9733, -1.6500],
         [-2.5831, 4.8117, -1.2733, 0.5852, 0.8832, 0.9733, 1.4916],
         [5.1662, 9.6234, -2.5466, 1.1704, 1.7664, 1.9466, 1.6500],
         [1.0473, -4.1687, -1.2317, 2.3021, 1.8876, 1.9696, -1.6956],
         [-1.0473, 4.1687, -1.2317, 2.3021, 1.8876, 1.9696, 1.4460],
         [2.0946, 8.3374, -2.4634, 4.6042, 3.7752, 3.9392, 1.6956]])
62
63
    expected_scores_3d = torch.tensor(
        [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1])
yinchimaoliang's avatar
yinchimaoliang committed
64
65
66
67
    expected_labels_3d = torch.tensor([6, 6, 6, 7, 7, 7, 0, 0, 0])
    assert torch.allclose(results['boxes_3d'].tensor, expected_boxes_3d)
    assert torch.allclose(results['scores_3d'], expected_scores_3d)
    assert torch.all(results['labels_3d'] == expected_labels_3d)