sassd.py 5.07 KB
Newer Older
Wenbo Yu's avatar
Wenbo Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmcv.ops import Voxelization
from mmcv.runner import force_fp32
from torch.nn import functional as F

from mmdet3d.core import bbox3d2result, merge_aug_bboxes_3d
from mmdet.models.builder import DETECTORS
from .. import builder
from .single_stage import SingleStage3DDetector


@DETECTORS.register_module()
class SASSD(SingleStage3DDetector):
    r"""`SASSD <https://github.com/skyhehe123/SA-SSD>` _ for 3D detection."""

    def __init__(self,
                 voxel_layer,
                 voxel_encoder,
                 middle_encoder,
                 backbone,
                 neck=None,
                 bbox_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None,
                 pretrained=None):
        super(SASSD, self).__init__(
            backbone=backbone,
            neck=neck,
            bbox_head=bbox_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg,
            pretrained=pretrained)

        self.voxel_layer = Voxelization(**voxel_layer)
        self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder)
        self.middle_encoder = builder.build_middle_encoder(middle_encoder)

    def extract_feat(self, points, img_metas=None, test_mode=False):
        """Extract features from points."""
        voxels, num_points, coors = self.voxelize(points)
        voxel_features = self.voxel_encoder(voxels, num_points, coors)
        batch_size = coors[-1, 0].item() + 1
        x, point_misc = self.middle_encoder(voxel_features, coors, batch_size,
                                            test_mode)
        x = self.backbone(x)
        if self.with_neck:
            x = self.neck(x)
        return x, point_misc

    @torch.no_grad()
    @force_fp32()
    def voxelize(self, points):
        """Apply hard voxelization to points."""
        voxels, coors, num_points = [], [], []
        for res in points:
            res_voxels, res_coors, res_num_points = self.voxel_layer(res)
            voxels.append(res_voxels)
            coors.append(res_coors)
            num_points.append(res_num_points)
        voxels = torch.cat(voxels, dim=0)
        num_points = torch.cat(num_points, dim=0)
        coors_batch = []
        for i, coor in enumerate(coors):
            coor_pad = F.pad(coor, (1, 0), mode='constant', value=i)
            coors_batch.append(coor_pad)
        coors_batch = torch.cat(coors_batch, dim=0)
        return voxels, num_points, coors_batch

    def forward_train(self,
                      points,
                      img_metas,
                      gt_bboxes_3d,
                      gt_labels_3d,
                      gt_bboxes_ignore=None):
        """Training forward function.

        Args:
            points (list[torch.Tensor]): Point cloud of each sample.
            img_metas (list[dict]): Meta information of each sample
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth
                boxes for each sample.
            gt_labels_3d (list[torch.Tensor]): Ground truth labels for
                boxes of each sampole
            gt_bboxes_ignore (list[torch.Tensor], optional): Ground truth
                boxes to be ignored. Defaults to None.

        Returns:
            dict: Losses of each branch.
        """

        x, point_misc = self.extract_feat(points, img_metas, test_mode=False)
        aux_loss = self.middle_encoder.aux_loss(*point_misc, gt_bboxes_3d)

        outs = self.bbox_head(x)
        loss_inputs = outs + (gt_bboxes_3d, gt_labels_3d, img_metas)
        losses = self.bbox_head.loss(
            *loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
        losses.update(aux_loss)
        return losses

    def simple_test(self, points, img_metas, imgs=None, rescale=False):
        """Test function without augmentaiton."""
        x, _ = self.extract_feat(points, img_metas, test_mode=True)
        outs = self.bbox_head(x)
        bbox_list = self.bbox_head.get_bboxes(
            *outs, img_metas, rescale=rescale)
        bbox_results = [
            bbox3d2result(bboxes, scores, labels)
            for bboxes, scores, labels in bbox_list
        ]
        return bbox_results

    def aug_test(self, points, img_metas, imgs=None, rescale=False):
        """Test function with augmentaiton."""
        feats = self.extract_feats(points, img_metas, test_mode=True)

        # only support aug_test for one sample
        aug_bboxes = []
        for x, img_meta in zip(feats, img_metas):
            outs = self.bbox_head(x)
            bbox_list = self.bbox_head.get_bboxes(
                *outs, img_meta, rescale=rescale)
            bbox_list = [
                dict(boxes_3d=bboxes, scores_3d=scores, labels_3d=labels)
                for bboxes, scores, labels in bbox_list
            ]
            aug_bboxes.append(bbox_list[0])

        # after merging, bboxes will be rescaled to the original image size
        merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas,
                                            self.bbox_head.test_cfg)

        return [merged_bboxes]