kitti_det.md 9.19 KB
Newer Older
dingchang's avatar
dingchang committed
1
2
3
4
5
6
7
8
# KITTI Dataset for 3D Object Detection

This page provides specific tutorials about the usage of MMDetection3D for KITTI dataset.

**Note**: Current tutorial is only for LiDAR-based and multi-modality 3D detection methods. Contents related to monocular methods will be supplemented afterwards.

## Prepare dataset

9
You can download KITTI 3D detection data [HERE](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) and unzip all zip files. Besides, the road planes could be downloaded from [HERE](https://download.openmmlab.com/mmdetection3d/data/train_planes.zip), which are optional for data augmentation during training for better performance. The road planes are generated by [AVOD](https://github.com/kujason/avod), you can see more details [HERE](https://github.com/kujason/avod/issues/19).
dingchang's avatar
dingchang committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Like the general way to prepare dataset, it is recommended to symlink the dataset root to `$MMDETECTION3D/data`.

The folder structure should be organized as follows before our processing.

```
mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── velodyne
│   │   ├── training
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   ├── label_2
│   │   │   ├── velodyne
32
│   │   │   ├── planes (optional)
dingchang's avatar
dingchang committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
```

### Create KITTI dataset

To create KITTI point cloud data, we load the raw point cloud data and generate the relevant annotations including object labels and bounding boxes. We also generate all single training objects' point cloud in KITTI dataset and save them as `.bin` files in `data/kitti/kitti_gt_database`. Meanwhile, `.pkl` info files are also generated for training or validation. Subsequently, create KITTI data by running

```bash
mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets

# Download data split
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c  https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt

48
49
50

python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti --with-plane

dingchang's avatar
dingchang committed
51
52
```

53
Note that if your local disk does not have enough space for saving converted data, you can change the `out-dir` to anywhere else, and you need to remove the `--with-plane` flag if `planes` are not prepared.
dingchang's avatar
dingchang committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

The folder structure after processing should be as below

```
kitti
├── ImageSets
│   ├── test.txt
│   ├── train.txt
│   ├── trainval.txt
│   ├── val.txt
├── testing
│   ├── calib
│   ├── image_2
│   ├── velodyne
│   ├── velodyne_reduced
├── training
│   ├── calib
│   ├── image_2
│   ├── label_2
│   ├── velodyne
│   ├── velodyne_reduced
75
│   ├── planes (optional)
dingchang's avatar
dingchang committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
├── kitti_gt_database
│   ├── xxxxx.bin
├── kitti_infos_train.pkl
├── kitti_infos_val.pkl
├── kitti_dbinfos_train.pkl
├── kitti_infos_test.pkl
├── kitti_infos_trainval.pkl
├── kitti_infos_train_mono3d.coco.json
├── kitti_infos_trainval_mono3d.coco.json
├── kitti_infos_test_mono3d.coco.json
├── kitti_infos_val_mono3d.coco.json
```

- `kitti_gt_database/xxxxx.bin`: point cloud data included in each 3D bounding box of the training dataset
- `kitti_infos_train.pkl`: training dataset infos, each frame info contains following details:
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
  - info\['point_cloud'\]: {'num_features': 4, 'velodyne_path': velodyne_path}.
  - info\['annos'\]: {
    - location: x,y,z are bottom center in referenced camera coordinate system (in meters), an Nx3 array
    - dimensions: height, width, length (in meters), an Nx3 array
    - rotation_y: rotation ry around Y-axis in camera coordinates \[-pi..pi\], an N array
    - name:  ground truth name array, an N array
    - difficulty: kitti difficulty, Easy, Moderate, Hard
    - group_ids: used for multi-part object
      }
  - (optional) info\['calib'\]: {
    - P0: camera0 projection matrix after rectification, an 3x4 array
    - P1: camera1 projection matrix after rectification, an 3x4 array
    - P2: camera2 projection matrix after rectification, an 3x4 array
    - P3: camera3 projection matrix after rectification, an 3x4 array
    - R0_rect: rectifying rotation matrix, an 4x4 array
    - Tr_velo_to_cam: transformation from Velodyne coordinate to camera coordinate, an 4x4 array
    - Tr_imu_to_velo: transformation from IMU coordinate to Velodyne coordinate, an 4x4 array
      }
  - (optional) info\['image'\]:{'image_idx': idx, 'image_path': image_path, 'image_shape', image_shape}.

**Note:** the info\['annos'\] is in the referenced camera coordinate system. More details please refer to [this](http://www.cvlibs.net/publications/Geiger2013IJRR.pdf)
dingchang's avatar
dingchang committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

The core function to get kitti_infos_xxx.pkl and kitti_infos_xxx_mono3d.coco.json are [get_kitti_image_info](https://github.com/open-mmlab/mmdetection3d/blob/7873c8f62b99314f35079f369d1dab8d63f8a3ce/tools/data_converter/kitti_data_utils.py#L140) and [get_2d_boxes](https://github.com/open-mmlab/mmdetection3d/blob/7873c8f62b99314f35079f369d1dab8d63f8a3ce/tools/data_converter/kitti_converter.py#L378). Please refer to [kitti_converter.py](https://github.com/open-mmlab/mmdetection3d/blob/7873c8f62b99314f35079f369d1dab8d63f8a3ce/tools/data_converter/kitti_converter.py) for more details.

## Train pipeline

A typical train pipeline of 3D detection on KITTI is as below.

```python
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4, # x, y, z, intensity
        use_dim=4, # x, y, z, intensity
        file_client_args=file_client_args),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        file_client_args=file_client_args),
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.78539816, 0.78539816]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
```

- Data augmentation:
153
154
155
  - `ObjectNoise`: apply noise to each GT objects in the scene.
  - `RandomFlip3D`: randomly flip input point cloud horizontally or vertically.
  - `GlobalRotScaleTrans`: rotate input point cloud.
dingchang's avatar
dingchang committed
156
157
158
159
160
161

## Evaluation

An example to evaluate PointPillars with 8 GPUs with kitti metrics is as follows:

```shell
162
bash tools/dist_test.sh configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py work_dirs/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/latest.pth 8 --eval bbox
dingchang's avatar
dingchang committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
```

## Metrics

KITTI evaluates 3D object detection performance using mean Average Precision (mAP) and Average Orientation Similarity (AOS), Please refer to its [official website](http://www.cvlibs.net/datasets/kitti/eval_3dobject.php) and [original paper](http://www.cvlibs.net/publications/Geiger2012CVPR.pdf) for more details.

We also adopt this approach for evaluation on KITTI. An example of printed evaluation results is as follows:

```
Car AP@0.70, 0.70, 0.70:
bbox AP:97.9252, 89.6183, 88.1564
bev  AP:90.4196, 87.9491, 85.1700
3d   AP:88.3891, 77.1624, 74.4654
aos  AP:97.70, 89.11, 87.38
Car AP@0.70, 0.50, 0.50:
bbox AP:97.9252, 89.6183, 88.1564
bev  AP:98.3509, 90.2042, 89.6102
3d   AP:98.2800, 90.1480, 89.4736
aos  AP:97.70, 89.11, 87.38
```

## Testing and make a submission

An example to test PointPillars on KITTI with 8 GPUs and generate a submission to the leaderboard is as follows:

```shell
mkdir -p results/kitti-3class

./tools/dist_test.sh configs/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py work_dirs/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/latest.pth 8 --out results/kitti-3class/results_eval.pkl --format-only --eval-options 'pklfile_prefix=results/kitti-3class/kitti_results' 'submission_prefix=results/kitti-3class/kitti_results'
```

After generating `results/kitti-3class/kitti_results/xxxxx.txt` files, you can submit these files to KITTI benchmark. Please refer to the [KITTI official website](http://www.cvlibs.net/datasets/kitti/index.php) for more details.