README.md 7.14 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
# Second: Sparsely embedded convolutional detection
2

Wenhao Wu's avatar
Wenhao Wu committed
3
> [SECOND: Sparsely Embedded Convolutional Detection](https://www.mdpi.com/1424-8220/18/10/3337)
4

Wenhao Wu's avatar
Wenhao Wu committed
5
<!-- [ALGORITHM] -->
6

Wenhao Wu's avatar
Wenhao Wu committed
7
## Abstract
8

Wenhao Wu's avatar
Wenhao Wu committed
9
LiDAR-based or RGB-D-based object detection is used in numerous applications, ranging from autonomous driving to robot vision. Voxel-based 3D convolutional networks have been used for some time to enhance the retention of information when processing point cloud LiDAR data. However, problems remain, including a slow inference speed and low orientation estimation performance. We therefore investigate an improved sparse convolution method for such networks, which significantly increases the speed of both training and inference. We also introduce a new form of angle loss regression to improve the orientation estimation performance and a new data augmentation approach that can enhance the convergence speed and performance. The proposed network produces state-of-the-art results on the KITTI 3D object detection benchmarks while maintaining a fast inference speed.
10
11
12
13
14

<div align=center>
<img src="https://user-images.githubusercontent.com/79644370/143889364-10be11c3-838e-4fc9-9613-184f0cd08907.png" width="800"/>
</div>

liyinhao's avatar
liyinhao committed
15
## Introduction
16

liyinhao's avatar
liyinhao committed
17
We implement SECOND and provide the results and checkpoints on KITTI dataset.
Ziyi Wu's avatar
Ziyi Wu committed
18

Wenhao Wu's avatar
Wenhao Wu committed
19
## Results and models
20

liyinhao's avatar
liyinhao committed
21
### KITTI
Ziyi Wu's avatar
Ziyi Wu committed
22

23
24
25
26
27
28
|                              Backbone                               |  Class  |  Lr schd   | Mem (GB) | Inf time (fps) |  mAP  |                                                                                                                                                                                             Download                                                                                                                                                                                             |
| :-----------------------------------------------------------------: | :-----: | :--------: | :------: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|        [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-car.py)         |   Car   | cyclic 80e |   5.4    |                | 79.07 |               [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-car/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238.log.json)               |
|  [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-car.py)   |   Car   | cyclic 80e |   2.9    |                | 78.72 |       [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301-1f5ad833.pth)\| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car/hv_second_secfpn_fp16_6x8_80e_kitti-3d-car_20200924_211301.log.json)        |
|       [SECFPN](./hv_second_secfpn_6x8_80e_kitti-3d-3class.py)       | 3 Class | cyclic 80e |   5.4    |                | 65.74 |         [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017-ae782e87.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/second/hv_second_secfpn_6x8_80e_kitti-3d-3class/hv_second_secfpn_6x8_80e_kitti-3d-3class_20210831_022017log.json)          |
| [SECFPN (FP16)](./hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class.py) | 3 Class | cyclic 80e |   2.9    |                | 67.4  | [model](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059-05f67bdf.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/fp16/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class/hv_second_secfpn_fp16_6x8_80e_kitti-3d-3class_20200925_110059.log.json) |
29
30
31

### Waymo

32
33
34
35
36
37
|                           Backbone                            | Load Interval |  Class  | Lr schd | Mem (GB) | Inf time (fps) | mAP@L1 | mAPH@L1 | mAP@L2 | **mAPH@L2** |                                                                                           Download                                                                                            |
| :-----------------------------------------------------------: | :-----------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :----: | :---------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| [SECFPN](./hv_second_secfpn_sbn_2x16_2x_waymoD5-3d-3class.py) |       5       | 3 Class |   2x    |   8.12   |                |  65.3  |  61.7   |  58.9  |    55.7     | [log](https://download.openmmlab.com/mmdetection3d/v0.1.0_models/second/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class/hv_second_secfpn_sbn_4x8_2x_waymoD5-3d-3class_20201115_112448.log.json) |
|                          above @ Car                          |               |         |   2x    |   8.12   |                |  67.1  |  66.6   |  58.7  |    58.2     |                                                                                                                                                                                               |
|                      above @ Pedestrian                       |               |         |   2x    |   8.12   |                |  68.1  |  59.1   |  59.5  |    51.5     |                                                                                                                                                                                               |
|                        above @ Cyclist                        |               |         |   2x    |   8.12   |                |  60.7  |  59.5   |  58.4  |    57.3     |                                                                                                                                                                                               |
38

39
40
41
42
Note:

- See more details about metrics and data split on Waymo [HERE](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/pointpillars). For implementation details, we basically follow the original settings. All of these results are achieved without bells-and-whistles, e.g. ensemble, multi-scale training and test augmentation.
- `FP16` means Mixed Precision (FP16) is adopted in training.
Wenhao Wu's avatar
Wenhao Wu committed
43
44
45
46
47
48
49
50
51
52
53
54

## Citation

```latex
@article{yan2018second,
  title={Second: Sparsely embedded convolutional detection},
  author={Yan, Yan and Mao, Yuxing and Li, Bo},
  journal={Sensors},
  year={2018},
  publisher={Multidisciplinary Digital Publishing Institute}
}
```