point_sa_module.py 13.5 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
wuyuefeng's avatar
wuyuefeng committed
2
3
import torch
from mmcv.cnn import ConvModule
zhangwenwei's avatar
zhangwenwei committed
4
5
from torch import nn as nn
from torch.nn import functional as F
wuyuefeng's avatar
wuyuefeng committed
6

7
8
from mmdet3d.ops import (GroupAll, PAConv, Points_Sampler, QueryAndGroup,
                         gather_points)
9
from .builder import SA_MODULES
wuyuefeng's avatar
wuyuefeng committed
10
11


12
13
class BasePointSAModule(nn.Module):
    """Base module for point set abstraction module used in PointNets.
wuyuefeng's avatar
wuyuefeng committed
14
15
16
17
18

    Args:
        num_point (int): Number of points.
        radii (list[float]): List of radius in each ball query.
        sample_nums (list[int]): Number of samples in each ball query.
19
        mlp_channels (list[list[int]]): Specify of the pointnet before
wuyuefeng's avatar
wuyuefeng committed
20
            the global pooling for each scale.
21
        fps_mod (list[str], optional): Type of FPS method, valid mod
22
23
24
25
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
            F-FPS: using feature distances for FPS.
            D-FPS: using Euclidean distances of points for FPS.
            FS: using F-FPS and D-FPS simultaneously.
26
27
28
        fps_sample_range_list (list[int], optional):
            Range of points to apply FPS. Default: [-1].
        dilated_group (bool, optional): Whether to use dilated ball query.
29
            Default: False.
30
        use_xyz (bool, optional): Whether to use xyz.
wuyuefeng's avatar
wuyuefeng committed
31
            Default: True.
32
        pool_mod (str, optional): Type of pooling method.
wuyuefeng's avatar
wuyuefeng committed
33
            Default: 'max_pool'.
34
35
36
37
38
39
        normalize_xyz (bool, optional): Whether to normalize local XYZ
            with radius. Default: False.
        grouper_return_grouped_xyz (bool, optional): Whether to return
            grouped xyz in `QueryAndGroup`. Defaults to False.
        grouper_return_grouped_idx (bool, optional): Whether to return
            grouped idx in `QueryAndGroup`. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
40
41
42
    """

    def __init__(self,
43
44
45
46
47
48
49
50
                 num_point,
                 radii,
                 sample_nums,
                 mlp_channels,
                 fps_mod=['D-FPS'],
                 fps_sample_range_list=[-1],
                 dilated_group=False,
                 use_xyz=True,
wuyuefeng's avatar
wuyuefeng committed
51
                 pool_mod='max',
52
53
54
55
                 normalize_xyz=False,
                 grouper_return_grouped_xyz=False,
                 grouper_return_grouped_idx=False):
        super(BasePointSAModule, self).__init__()
wuyuefeng's avatar
wuyuefeng committed
56
57
58

        assert len(radii) == len(sample_nums) == len(mlp_channels)
        assert pool_mod in ['max', 'avg']
59
60
61
62
63
64
65
        assert isinstance(fps_mod, list) or isinstance(fps_mod, tuple)
        assert isinstance(fps_sample_range_list, list) or isinstance(
            fps_sample_range_list, tuple)
        assert len(fps_mod) == len(fps_sample_range_list)

        if isinstance(mlp_channels, tuple):
            mlp_channels = list(map(list, mlp_channels))
66
        self.mlp_channels = mlp_channels
67
68
69
70
71

        if isinstance(num_point, int):
            self.num_point = [num_point]
        elif isinstance(num_point, list) or isinstance(num_point, tuple):
            self.num_point = num_point
72
73
        elif num_point is None:
            self.num_point = None
74
75
        else:
            raise NotImplementedError('Error type of num_point!')
wuyuefeng's avatar
wuyuefeng committed
76
77
78
79

        self.pool_mod = pool_mod
        self.groupers = nn.ModuleList()
        self.mlps = nn.ModuleList()
80
81
82
        self.fps_mod_list = fps_mod
        self.fps_sample_range_list = fps_sample_range_list

83
84
85
86
87
88
        if self.num_point is not None:
            self.points_sampler = Points_Sampler(self.num_point,
                                                 self.fps_mod_list,
                                                 self.fps_sample_range_list)
        else:
            self.points_sampler = None
wuyuefeng's avatar
wuyuefeng committed
89
90
91
92
93

        for i in range(len(radii)):
            radius = radii[i]
            sample_num = sample_nums[i]
            if num_point is not None:
94
95
96
97
                if dilated_group and i != 0:
                    min_radius = radii[i - 1]
                else:
                    min_radius = 0
wuyuefeng's avatar
wuyuefeng committed
98
99
100
                grouper = QueryAndGroup(
                    radius,
                    sample_num,
101
                    min_radius=min_radius,
wuyuefeng's avatar
wuyuefeng committed
102
                    use_xyz=use_xyz,
103
104
105
                    normalize_xyz=normalize_xyz,
                    return_grouped_xyz=grouper_return_grouped_xyz,
                    return_grouped_idx=grouper_return_grouped_idx)
wuyuefeng's avatar
wuyuefeng committed
106
107
108
109
            else:
                grouper = GroupAll(use_xyz)
            self.groupers.append(grouper)

110
111
    def _sample_points(self, points_xyz, features, indices, target_xyz):
        """Perform point sampling based on inputs.
wuyuefeng's avatar
wuyuefeng committed
112

113
114
115
        If `indices` is specified, directly sample corresponding points.
        Else if `target_xyz` is specified, use is as sampled points.
        Otherwise sample points using `self.points_sampler`.
wuyuefeng's avatar
wuyuefeng committed
116
117
118
119
120

        Args:
            points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
            features (Tensor): (B, C, N) features of each point.
            indices (Tensor): (B, num_point) Index of the features.
121
            target_xyz (Tensor): (B, M, 3) new_xyz coordinates of the outputs.
wuyuefeng's avatar
wuyuefeng committed
122
123

        Returns:
124
125
            Tensor: (B, num_point, 3) sampled xyz coordinates of points.
            Tensor: (B, num_point) sampled points' index.
wuyuefeng's avatar
wuyuefeng committed
126
127
        """
        xyz_flipped = points_xyz.transpose(1, 2).contiguous()
128
129
130
131
132
133
134
        if indices is not None:
            assert (indices.shape[1] == self.num_point[0])
            new_xyz = gather_points(xyz_flipped, indices).transpose(
                1, 2).contiguous() if self.num_point is not None else None
        elif target_xyz is not None:
            new_xyz = target_xyz.contiguous()
        else:
135
136
137
138
139
140
            if self.num_point is not None:
                indices = self.points_sampler(points_xyz, features)
                new_xyz = gather_points(xyz_flipped,
                                        indices).transpose(1, 2).contiguous()
            else:
                new_xyz = None
wuyuefeng's avatar
wuyuefeng committed
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        return new_xyz, indices

    def _pool_features(self, features):
        """Perform feature aggregation using pooling operation.

        Args:
            features (torch.Tensor): (B, C, N, K)
                Features of locally grouped points before pooling.

        Returns:
            torch.Tensor: (B, C, N)
                Pooled features aggregating local information.
        """
        if self.pool_mod == 'max':
            # (B, C, N, 1)
            new_features = F.max_pool2d(
                features, kernel_size=[1, features.size(3)])
        elif self.pool_mod == 'avg':
            # (B, C, N, 1)
            new_features = F.avg_pool2d(
                features, kernel_size=[1, features.size(3)])
        else:
            raise NotImplementedError

        return new_features.squeeze(-1).contiguous()

    def forward(
        self,
        points_xyz,
        features=None,
        indices=None,
        target_xyz=None,
    ):
        """forward.

        Args:
            points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
179
            features (Tensor, optional): (B, C, N) features of each point.
180
                Default: None.
181
182
183
            indices (Tensor, optional): (B, num_point) Index of the features.
                Default: None.
            target_xyz (Tensor, optional): (B, M, 3) new coords of the outputs.
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
                Default: None.

        Returns:
            Tensor: (B, M, 3) where M is the number of points.
                New features xyz.
            Tensor: (B, M, sum_k(mlps[k][-1])) where M is the number
                of points. New feature descriptors.
            Tensor: (B, M) where M is the number of points.
                Index of the features.
        """
        new_features_list = []

        # sample points, (B, num_point, 3), (B, num_point)
        new_xyz, indices = self._sample_points(points_xyz, features, indices,
                                               target_xyz)

wuyuefeng's avatar
wuyuefeng committed
200
        for i in range(len(self.groupers)):
201
202
203
204
205
            # grouped_results may contain:
            # - grouped_features: (B, C, num_point, nsample)
            # - grouped_xyz: (B, 3, num_point, nsample)
            # - grouped_idx: (B, num_point, nsample)
            grouped_results = self.groupers[i](points_xyz, new_xyz, features)
wuyuefeng's avatar
wuyuefeng committed
206
207

            # (B, mlp[-1], num_point, nsample)
208
            new_features = self.mlps[i](grouped_results)
wuyuefeng's avatar
wuyuefeng committed
209

210
211
212
213
214
215
216
217
            # this is a bit hack because PAConv outputs two values
            # we take the first one as feature
            if isinstance(self.mlps[i][0], PAConv):
                assert isinstance(new_features, tuple)
                new_features = new_features[0]

            # (B, mlp[-1], num_point)
            new_features = self._pool_features(new_features)
wuyuefeng's avatar
wuyuefeng committed
218
219
220
221
222
            new_features_list.append(new_features)

        return new_xyz, torch.cat(new_features_list, dim=1), indices


223
224
225
226
227
228
229
230
231
232
233
@SA_MODULES.register_module()
class PointSAModuleMSG(BasePointSAModule):
    """Point set abstraction module with multi-scale grouping (MSG) used in
    PointNets.

    Args:
        num_point (int): Number of points.
        radii (list[float]): List of radius in each ball query.
        sample_nums (list[int]): Number of samples in each ball query.
        mlp_channels (list[list[int]]): Specify of the pointnet before
            the global pooling for each scale.
234
        fps_mod (list[str], optional): Type of FPS method, valid mod
235
236
237
238
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
            F-FPS: using feature distances for FPS.
            D-FPS: using Euclidean distances of points for FPS.
            FS: using F-FPS and D-FPS simultaneously.
239
240
241
        fps_sample_range_list (list[int], optional): Range of points to
            apply FPS. Default: [-1].
        dilated_group (bool, optional): Whether to use dilated ball query.
242
            Default: False.
243
        norm_cfg (dict, optional): Type of normalization method.
244
            Default: dict(type='BN2d').
245
        use_xyz (bool, optional): Whether to use xyz.
246
            Default: True.
247
        pool_mod (str, optional): Type of pooling method.
248
            Default: 'max_pool'.
249
250
251
252
253
        normalize_xyz (bool, optional): Whether to normalize local XYZ
            with radius. Default: False.
        bias (bool | str, optional): If specified as `auto`, it will be
            decided by `norm_cfg`. `bias` will be set as True if
            `norm_cfg` is None, otherwise False. Default: 'auto'.
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    """

    def __init__(self,
                 num_point,
                 radii,
                 sample_nums,
                 mlp_channels,
                 fps_mod=['D-FPS'],
                 fps_sample_range_list=[-1],
                 dilated_group=False,
                 norm_cfg=dict(type='BN2d'),
                 use_xyz=True,
                 pool_mod='max',
                 normalize_xyz=False,
                 bias='auto'):
        super(PointSAModuleMSG, self).__init__(
            num_point=num_point,
            radii=radii,
            sample_nums=sample_nums,
            mlp_channels=mlp_channels,
            fps_mod=fps_mod,
            fps_sample_range_list=fps_sample_range_list,
            dilated_group=dilated_group,
            use_xyz=use_xyz,
            pool_mod=pool_mod,
            normalize_xyz=normalize_xyz)

        for i in range(len(self.mlp_channels)):
            mlp_channel = self.mlp_channels[i]
            if use_xyz:
                mlp_channel[0] += 3

            mlp = nn.Sequential()
            for i in range(len(mlp_channel) - 1):
                mlp.add_module(
                    f'layer{i}',
                    ConvModule(
                        mlp_channel[i],
                        mlp_channel[i + 1],
                        kernel_size=(1, 1),
                        stride=(1, 1),
                        conv_cfg=dict(type='Conv2d'),
                        norm_cfg=norm_cfg,
                        bias=bias))
            self.mlps.append(mlp)


301
@SA_MODULES.register_module()
wuyuefeng's avatar
wuyuefeng committed
302
class PointSAModule(PointSAModuleMSG):
303
304
    """Point set abstraction module with single-scale grouping (SSG) used in
    PointNets.
wuyuefeng's avatar
wuyuefeng committed
305
306
307
308

    Args:
        mlp_channels (list[int]): Specify of the pointnet before
            the global pooling for each scale.
309
        num_point (int, optional): Number of points.
wuyuefeng's avatar
wuyuefeng committed
310
            Default: None.
311
        radius (float, optional): Radius to group with.
wuyuefeng's avatar
wuyuefeng committed
312
            Default: None.
313
        num_sample (int, optional): Number of samples in each ball query.
wuyuefeng's avatar
wuyuefeng committed
314
            Default: None.
315
        norm_cfg (dict, optional): Type of normalization method.
wuyuefeng's avatar
wuyuefeng committed
316
            Default: dict(type='BN2d').
317
        use_xyz (bool, optional): Whether to use xyz.
wuyuefeng's avatar
wuyuefeng committed
318
            Default: True.
319
        pool_mod (str, optional): Type of pooling method.
wuyuefeng's avatar
wuyuefeng committed
320
            Default: 'max_pool'.
321
        fps_mod (list[str], optional): Type of FPS method, valid mod
322
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
323
324
325
326
        fps_sample_range_list (list[int], optional): Range of points
            to apply FPS. Default: [-1].
        normalize_xyz (bool, optional): Whether to normalize local XYZ
            with radius. Default: False.
wuyuefeng's avatar
wuyuefeng committed
327
328
329
    """

    def __init__(self,
330
331
332
333
334
335
336
337
338
339
340
                 mlp_channels,
                 num_point=None,
                 radius=None,
                 num_sample=None,
                 norm_cfg=dict(type='BN2d'),
                 use_xyz=True,
                 pool_mod='max',
                 fps_mod=['D-FPS'],
                 fps_sample_range_list=[-1],
                 normalize_xyz=False):
        super(PointSAModule, self).__init__(
wuyuefeng's avatar
wuyuefeng committed
341
342
343
344
345
346
347
            mlp_channels=[mlp_channels],
            num_point=num_point,
            radii=[radius],
            sample_nums=[num_sample],
            norm_cfg=norm_cfg,
            use_xyz=use_xyz,
            pool_mod=pool_mod,
348
349
            fps_mod=fps_mod,
            fps_sample_range_list=fps_sample_range_list,
wuyuefeng's avatar
wuyuefeng committed
350
            normalize_xyz=normalize_xyz)