benchmarks.md 12.3 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4

# Benchmarks

Here we benchmark the training and testing speed of models in MMDetection3D,
zhangwenwei's avatar
zhangwenwei committed
5
with some other open source 3D detection codebases.
zhangwenwei's avatar
zhangwenwei committed
6
7
8
9
10

## Settings

* Hardwares: 8 NVIDIA Tesla V100 (32G) GPUs, Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
* Software: Python 3.7, CUDA 10.1, cuDNN 7.6.5, PyTorch 1.3, numba 0.48.0.
zhangwenwei's avatar
zhangwenwei committed
11
* Model: Since all the other codebases implements different models, we compare the corresponding models including SECOND, PointPillars, Part-A2, and VoteNet with them separately.
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
* Metrics: We use the average throughput in iterations of the entire training run and skip the first 50 iterations of each epoch to skip GPU warmup time.

## Main Results

16
We compare the training speed (samples/s) with other codebases if they implement the similar models. The results are as below, the greater the numbers in the table, the faster of the training process.
zhangwenwei's avatar
zhangwenwei committed
17

18
19
20
21
22
23
24
| Methods | MMDetection3D |votenet| Det3D | OpenPCDet |
|:-------:|:-------------:|:-----:|:-----:|:---------:|
| VoteNet | 358           |   77  | ×     | ×         |
| PointPillars-car| 141           |   ×  | 140     | ×         |
| PointPillars-3class| 107           |   ×      | ×    |44     |
| SECOND | 40           |   ×      | ×    |30     |
| Part-A2| 17           |   ×      | ×    |14     |
zhangwenwei's avatar
zhangwenwei committed
25
26
27

## Details of Comparison

28
29
### Modification for Calculating Speed

zhangwenwei's avatar
zhangwenwei committed
30
* __MMDetection3D__: We try to use as similar settings as those of other codebases as possible using [benchmark configs](https://github.com/open-mmlab/MMDetection3D/blob/master/configs/benchmark).
31

wuyuefeng's avatar
wuyuefeng committed
32
* __Det3D__: For comparison with Det3D, we use the commit [519251e](https://github.com/poodarchu/Det3D/tree/519251e72a5c1fdd58972eabeac67808676b9bb7).
zhangwenwei's avatar
zhangwenwei committed
33
34

* __OpenPCDet__: For comparison with OpenPCDet, we use the commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2).
liyinhao's avatar
liyinhao committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    For training speed, we add code to record the running time in the file `./tools/train_utils/train_utils.py`. We calculate the speed of each epoch, and report the average speed of all the epochs.
    <details>
    <summary>
    (diff to make it use the same method for benchmarking speed - click to expand)
    </summary>

    ```diff
    diff --git a/tools/train_utils/train_utils.py b/tools/train_utils/train_utils.py
    index 91f21dd..021359d 100644
    --- a/tools/train_utils/train_utils.py
    +++ b/tools/train_utils/train_utils.py
    @@ -2,6 +2,7 @@ import torch
     import os
     import glob
     import tqdm
    +import datetime
     from torch.nn.utils import clip_grad_norm_


    @@ -13,7 +14,10 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
         if rank == 0:
             pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True)

    +    start_time = None
         for cur_it in range(total_it_each_epoch):
    +        if cur_it > 49 and start_time is None:
    +            start_time = datetime.datetime.now()
             try:
                 batch = next(dataloader_iter)
             except StopIteration:
    @@ -55,9 +59,11 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
                     tb_log.add_scalar('learning_rate', cur_lr, accumulated_iter)
                     for key, val in tb_dict.items():
                         tb_log.add_scalar('train_' + key, val, accumulated_iter)
    +    endtime = datetime.datetime.now()
    +    speed = (endtime - start_time).seconds / (total_it_each_epoch - 50)
         if rank == 0:
             pbar.close()
    -    return accumulated_iter
    +    return accumulated_iter, speed


     def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg,
    @@ -65,6 +71,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50,
                     merge_all_iters_to_one_epoch=False):
         accumulated_iter = start_iter
    +    speeds = []
         with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar:
             total_it_each_epoch = len(train_loader)
             if merge_all_iters_to_one_epoch:
    @@ -82,7 +89,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     cur_scheduler = lr_warmup_scheduler
                 else:
                     cur_scheduler = lr_scheduler
    -            accumulated_iter = train_one_epoch(
    +            accumulated_iter, speed = train_one_epoch(
                     model, optimizer, train_loader, model_func,
                     lr_scheduler=cur_scheduler,
                     accumulated_iter=accumulated_iter, optim_cfg=optim_cfg,
    @@ -91,7 +98,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     total_it_each_epoch=total_it_each_epoch,
                     dataloader_iter=dataloader_iter
                 )
    -
    +            speeds.append(speed)
                 # save trained model
                 trained_epoch = cur_epoch + 1
                 if trained_epoch % ckpt_save_interval == 0 and rank == 0:
    @@ -107,6 +114,8 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     save_checkpoint(
                         checkpoint_state(model, optimizer, trained_epoch, accumulated_iter), filename=ckpt_name,
                     )
    +            print(speed)
    +    print(f'*******{sum(speeds) / len(speeds)}******')


     def model_state_to_cpu(model_state):
    ```

    </details>

zhangwenwei's avatar
zhangwenwei committed
118
119
120
### VoteNet

* __MMDetection3D__: With release v0.1.0, run
liyinhao's avatar
liyinhao committed
121
122
123
124
125

  ```bash
  ./tools/dist_train.sh configs/votenet/votenet_16x8_sunrgbd-3d-10class.py 8 --no-validate
  ```

126
* __votenet__: At commit [2f6d6d3](https://github.com/facebookresearch/votenet/tree/2f6d6d36ff98d96901182e935afe48ccee82d566), run
liyinhao's avatar
liyinhao committed
127
128

  ```bash
zhangwenwei's avatar
zhangwenwei committed
129
  python train.py --dataset sunrgbd --batch_size 16
liyinhao's avatar
liyinhao committed
130
131
  ```

wuyuefeng's avatar
wuyuefeng committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

  Then benchmark the test speed by running

  ```bash
  python eval.py --dataset sunrgbd --checkpoint_path log_sunrgbd/checkpoint.tar --batch_size 1 --dump_dir eval_sunrgbd --cluster_sampling seed_fps --use_3d_nms --use_cls_nms --per_class_proposal
  ```

  Note that eval.py is modified to compute inference time.

  <details>
  <summary>
  (diff to benchmark the similar models - click to expand)
  </summary>

  ```diff
  diff --git a/eval.py b/eval.py
    index c0b2886..04921e9 100644
    --- a/eval.py
    +++ b/eval.py
    @@ -10,6 +10,7 @@ import os
     import sys
     import numpy as np
     from datetime import datetime
    +import time
     import argparse
     import importlib
     import torch
    @@ -28,7 +29,7 @@ parser.add_argument('--checkpoint_path', default=None, help='Model checkpoint pa
     parser.add_argument('--dump_dir', default=None, help='Dump dir to save sample outputs [default: None]')
     parser.add_argument('--num_point', type=int, default=20000, help='Point Number [default: 20000]')
     parser.add_argument('--num_target', type=int, default=256, help='Point Number [default: 256]')
    -parser.add_argument('--batch_size', type=int, default=8, help='Batch Size during training [default: 8]')
    +parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during training [default: 8]')
     parser.add_argument('--vote_factor', type=int, default=1, help='Number of votes generated from each seed [default: 1]')
     parser.add_argument('--cluster_sampling', default='vote_fps', help='Sampling strategy for vote clusters: vote_fps, seed_fps, random [default: vote_fps]')
     parser.add_argument('--ap_iou_thresholds', default='0.25,0.5', help='A list of AP IoU thresholds [default: 0.25,0.5]')
    @@ -132,6 +133,7 @@ CONFIG_DICT = {'remove_empty_box': (not FLAGS.faster_eval), 'use_3d_nms': FLAGS.
     # ------------------------------------------------------------------------- GLOBAL CONFIG END

     def evaluate_one_epoch():
    +    time_list = list()
         stat_dict = {}
         ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \
             for iou_thresh in AP_IOU_THRESHOLDS]
    @@ -144,6 +146,8 @@ def evaluate_one_epoch():

             # Forward pass
             inputs = {'point_clouds': batch_data_label['point_clouds']}
    +        torch.cuda.synchronize()
    +        start_time = time.perf_counter()
             with torch.no_grad():
                 end_points = net(inputs)

    @@ -161,6 +165,12 @@ def evaluate_one_epoch():

             batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT)
             batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)
    +        torch.cuda.synchronize()
    +        elapsed = time.perf_counter() - start_time
    +        time_list.append(elapsed)
    +
    +        if len(time_list==200):
    +            print("average inference time: %4f"%(sum(time_list[5:])/len(time_list[5:])))
             for ap_calculator in ap_calculator_list:
                 ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)

  ```



202
### PointPillars-car
zhangwenwei's avatar
zhangwenwei committed
203

204
* __MMDetection3D__: With release v0.1.0, run
liyinhao's avatar
liyinhao committed
205
206

  ```bash
wuyuefeng's avatar
wuyuefeng committed
207
  ./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py 8 --no-validate
ZwwWayne's avatar
ZwwWayne committed
208
  ```
liyinhao's avatar
liyinhao committed
209

210
* __Det3D__: At commit [519251e](https://github.com/poodarchu/Det3D/tree/519251e72a5c1fdd58972eabeac67808676b9bb7), use `kitti_point_pillars_mghead_syncbn.py` and run
liyinhao's avatar
liyinhao committed
211
212

  ```bash
ZwwWayne's avatar
ZwwWayne committed
213
214
  ./tools/scripts/train.sh --launcher=slurm --gpus=8
  ```
liyinhao's avatar
liyinhao committed
215

ZwwWayne's avatar
ZwwWayne committed
216
217
218
219
  Note that the config in train.sh is modified to train point pillars.

  <details>
  <summary>
liyinhao's avatar
liyinhao committed
220
  (diff to benchmark the similar models - click to expand)
ZwwWayne's avatar
ZwwWayne committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
  </summary>

  ```diff
  diff --git a/tools/scripts/train.sh b/tools/scripts/train.sh
  index 3a93f95..461e0ea 100755
  --- a/tools/scripts/train.sh
  +++ b/tools/scripts/train.sh
  @@ -16,9 +16,9 @@ then
   fi

   # Voxelnet
  -python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR
  +# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR
   # python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/cbgs/configs/  nusc_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$NUSC_CBGS_WORK_DIR
   # python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  lyft_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$LYFT_CBGS_WORK_DIR

   # PointPillars
  -# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/  original_pp_mghead_syncbn_kitti.py --work_dir=$PP_WORK_DIR
  +python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/  kitti_point_pillars_mghead_syncbn.py
  ```
wuyuefeng's avatar
wuyuefeng committed
241

ZwwWayne's avatar
ZwwWayne committed
242
  </details>
zhangwenwei's avatar
zhangwenwei committed
243

244
### PointPillars-3class
zhangwenwei's avatar
zhangwenwei committed
245
246
247
248
249
250
251
252
253
254
255

* __MMDetection3D__: With release v0.1.0, run

  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```

* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), run

  ```bash
  cd tools
256
  sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/kitti_models/pointpillar.yaml --batch_size 32  --workers 32 --epochs 80
zhangwenwei's avatar
zhangwenwei committed
257
258
  ```

zhangwenwei's avatar
zhangwenwei committed
259
260
261
262
### SECOND

* __MMDetection3D__: With release v0.1.0, run

liyinhao's avatar
liyinhao committed
263
264
265
  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```
zhangwenwei's avatar
zhangwenwei committed
266

zhangwenwei's avatar
zhangwenwei committed
267
* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), run
liyinhao's avatar
liyinhao committed
268
269
270

  ```bash
  cd tools
271
  sh ./scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/kitti_models/second.yaml --batch_size 32  --workers 32 --epochs 80
liyinhao's avatar
liyinhao committed
272
  ```
zhangwenwei's avatar
zhangwenwei committed
273
274
275
276
277

### Part-A2

* __MMDetection3D__: With release v0.1.0, run

liyinhao's avatar
liyinhao committed
278
279
280
281
  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```

zhangwenwei's avatar
zhangwenwei committed
282
* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), train the model by running
liyinhao's avatar
liyinhao committed
283
284
285

  ```bash
  cd tools
286
  sh ./scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/kitti_models/PartA2.yaml --batch_size 32 --workers 32 --epochs 80
liyinhao's avatar
liyinhao committed
287
  ```