test_heads.py 38.7 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
import copy
liyinhao's avatar
liyinhao committed
2
import numpy as np
wuyuefeng's avatar
wuyuefeng committed
3
import pytest
liyinhao's avatar
liyinhao committed
4
import random
wuyuefeng's avatar
wuyuefeng committed
5
import torch
zhangwenwei's avatar
zhangwenwei committed
6
from os.path import dirname, exists, join
wuyuefeng's avatar
wuyuefeng committed
7

liyinhao's avatar
liyinhao committed
8
9
10
from mmdet3d.core.bbox import (Box3DMode, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes)
from mmdet3d.models.builder import build_head
11
from mmdet.apis import set_random_seed
liyinhao's avatar
liyinhao committed
12
13
14
15
16
17
18
19


def _setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
20

wuyuefeng's avatar
wuyuefeng committed
21
22

def _get_config_directory():
zhangwenwei's avatar
zhangwenwei committed
23
    """Find the predefined detector config directory."""
wuyuefeng's avatar
wuyuefeng committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    try:
        # Assume we are running in the source mmdetection repo
        repo_dpath = dirname(dirname(__file__))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet
        repo_dpath = dirname(dirname(mmdet.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
zhangwenwei's avatar
zhangwenwei committed
38
    """Load a configuration as a python module."""
wuyuefeng's avatar
wuyuefeng committed
39
40
41
42
43
44
45
46
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_head_cfg(fname):
zhangwenwei's avatar
zhangwenwei committed
47
48
    """Grab configs necessary to create a bbox_head.

49
50
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
wuyuefeng's avatar
wuyuefeng committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg))

    bbox_head = model.bbox_head
    bbox_head.update(train_cfg=train_cfg)
    bbox_head.update(test_cfg=test_cfg)
    return bbox_head


def _get_rpn_head_cfg(fname):
zhangwenwei's avatar
zhangwenwei committed
65
66
    """Grab configs necessary to create a rpn_head.

67
68
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
wuyuefeng's avatar
wuyuefeng committed
69
70
71
72
73
74
75
76
77
78
79
80
81
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg))

    rpn_head = model.rpn_head
    rpn_head.update(train_cfg=train_cfg.rpn)
    rpn_head.update(test_cfg=test_cfg.rpn)
    return rpn_head, train_cfg.rpn_proposal


liyinhao's avatar
liyinhao committed
82
83
84
def _get_roi_head_cfg(fname):
    """Grab configs necessary to create a roi_head.

85
86
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg))

    roi_head = model.roi_head
    roi_head.update(train_cfg=train_cfg.rcnn)
    roi_head.update(test_cfg=test_cfg.rcnn)
    return roi_head


def _get_pts_bbox_head_cfg(fname):
    """Grab configs necessary to create a pts_bbox_head.

103
104
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg.pts))
    test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg.pts))

    pts_bbox_head = model.pts_bbox_head
    pts_bbox_head.update(train_cfg=train_cfg)
    pts_bbox_head.update(test_cfg=test_cfg)
    return pts_bbox_head


def _get_vote_head_cfg(fname):
    """Grab configs necessary to create a vote_head.

121
122
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg))

    vote_head = model.bbox_head
    vote_head.update(train_cfg=train_cfg)
    vote_head.update(test_cfg=test_cfg)
    return vote_head


def _get_parta2_bbox_head_cfg(fname):
    """Grab configs necessary to create a parta2_bbox_head.

139
140
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
141
142
143
144
145
146
147
148
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    vote_head = model.roi_head.bbox_head
    return vote_head


zhangwenwei's avatar
zhangwenwei committed
149
def test_anchor3d_head_loss():
wuyuefeng's avatar
wuyuefeng committed
150
151
152
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    bbox_head_cfg = _get_head_cfg(
zhangwenwei's avatar
zhangwenwei committed
153
        'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')
wuyuefeng's avatar
wuyuefeng committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    from mmdet3d.models.builder import build_head
    self = build_head(bbox_head_cfg)
    self.cuda()
    assert isinstance(self.conv_cls, torch.nn.modules.conv.Conv2d)
    assert self.conv_cls.in_channels == 512
    assert self.conv_cls.out_channels == 18
    assert self.conv_reg.out_channels == 42
    assert self.conv_dir_cls.out_channels == 12

    # test forward
    feats = list()
    feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)
    assert cls_score[0].shape == torch.Size([2, 18, 200, 176])
    assert bbox_pred[0].shape == torch.Size([2, 42, 200, 176])
    assert dir_cls_preds[0].shape == torch.Size([2, 12, 200, 176])

    # test loss
    gt_bboxes = list(
        torch.tensor(
            [[[6.4118, -3.4305, -1.7291, 1.7033, 3.4693, 1.6197, -0.9091]],
             [[16.9107, 9.7925, -1.9201, 1.6097, 3.2786, 1.5307, -2.4056]]],
            dtype=torch.float32).cuda())
    gt_labels = list(torch.tensor([[0], [1]], dtype=torch.int64).cuda())
    input_metas = [{
        'sample_idx': 1234
    }, {
        'sample_idx': 2345
    }]  # fake input_metas

    losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
                       gt_labels, input_metas)
zhangwenwei's avatar
zhangwenwei committed
187
188
189
    assert losses['loss_cls'][0] > 0
    assert losses['loss_bbox'][0] > 0
    assert losses['loss_dir'][0] > 0
wuyuefeng's avatar
wuyuefeng committed
190
191
192
193
194
195

    # test empty ground truth case
    gt_bboxes = list(torch.empty((2, 0, 7)).cuda())
    gt_labels = list(torch.empty((2, 0)).cuda())
    empty_gt_losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
                                gt_labels, input_metas)
zhangwenwei's avatar
zhangwenwei committed
196
197
198
    assert empty_gt_losses['loss_cls'][0] > 0
    assert empty_gt_losses['loss_bbox'][0] == 0
    assert empty_gt_losses['loss_dir'][0] == 0
wuyuefeng's avatar
wuyuefeng committed
199
200


zhangwenwei's avatar
zhangwenwei committed
201
def test_anchor3d_head_getboxes():
wuyuefeng's avatar
wuyuefeng committed
202
203
204
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    bbox_head_cfg = _get_head_cfg(
zhangwenwei's avatar
zhangwenwei committed
205
        'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')
wuyuefeng's avatar
wuyuefeng committed
206
207
208
209
210
211
212

    from mmdet3d.models.builder import build_head
    self = build_head(bbox_head_cfg)
    self.cuda()

    feats = list()
    feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
213
    # fake input_metas
wuyuefeng's avatar
wuyuefeng committed
214
    input_metas = [{
215
216
217
        'sample_idx': 1234,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
wuyuefeng's avatar
wuyuefeng committed
218
    }, {
219
220
221
222
        'sample_idx': 2345,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
    }]
wuyuefeng's avatar
wuyuefeng committed
223
224
225
226
227
228
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)

    # test get_boxes
    cls_score[0] -= 1.5  # too many positive samples may cause cuda oom
    result_list = self.get_bboxes(cls_score, bbox_pred, dir_cls_preds,
                                  input_metas)
zhangwenwei's avatar
zhangwenwei committed
229
    assert (result_list[0][1] > 0.3).all()
wuyuefeng's avatar
wuyuefeng committed
230
231
232
233
234
235


def test_parta2_rpnhead_getboxes():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    rpn_head_cfg, proposal_cfg = _get_rpn_head_cfg(
zhangwenwei's avatar
zhangwenwei committed
236
        'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
wuyuefeng's avatar
wuyuefeng committed
237
238
239
240
241
242

    self = build_head(rpn_head_cfg)
    self.cuda()

    feats = list()
    feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
243
    # fake input_metas
wuyuefeng's avatar
wuyuefeng committed
244
    input_metas = [{
245
246
247
        'sample_idx': 1234,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
wuyuefeng's avatar
wuyuefeng committed
248
    }, {
249
250
251
252
        'sample_idx': 2345,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
    }]
wuyuefeng's avatar
wuyuefeng committed
253
254
255
256
257
258
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)

    # test get_boxes
    cls_score[0] -= 1.5  # too many positive samples may cause cuda oom
    result_list = self.get_bboxes(cls_score, bbox_pred, dir_cls_preds,
                                  input_metas, proposal_cfg)
zhangwenwei's avatar
zhangwenwei committed
259
260
    assert result_list[0]['scores_3d'].shape == torch.Size([512])
    assert result_list[0]['labels_3d'].shape == torch.Size([512])
wuyuefeng's avatar
wuyuefeng committed
261
    assert result_list[0]['cls_preds'].shape == torch.Size([512, 3])
262
    assert result_list[0]['boxes_3d'].tensor.shape == torch.Size([512, 7])
wuyuefeng's avatar
Votenet  
wuyuefeng committed
263
264
265
266
267


def test_vote_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
liyinhao's avatar
liyinhao committed
268
269
270
271
272
273
274
    _setup_seed(0)
    vote_head_cfg = _get_vote_head_cfg(
        'votenet/votenet_8x8_scannet-3d-18class.py')
    self = build_head(vote_head_cfg).cuda()
    fp_xyz = [torch.rand([2, 256, 3], dtype=torch.float32).cuda()]
    fp_features = [torch.rand([2, 256, 256], dtype=torch.float32).cuda()]
    fp_indices = [torch.randint(0, 128, [2, 256]).cuda()]
wuyuefeng's avatar
Votenet  
wuyuefeng committed
275
276
277

    input_dict = dict(
        fp_xyz=fp_xyz, fp_features=fp_features, fp_indices=fp_indices)
liyinhao's avatar
liyinhao committed
278

wuyuefeng's avatar
Votenet  
wuyuefeng committed
279
280
281
282
    # test forward
    ret_dict = self(input_dict, 'vote')
    assert ret_dict['center'].shape == torch.Size([2, 256, 3])
    assert ret_dict['obj_scores'].shape == torch.Size([2, 256, 2])
liyinhao's avatar
liyinhao committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    assert ret_dict['size_res'].shape == torch.Size([2, 256, 18, 3])
    assert ret_dict['dir_res'].shape == torch.Size([2, 256, 1])

    # test loss
    points = [torch.rand([40000, 4], device='cuda') for i in range(2)]
    gt_bbox1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox2 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox1, gt_bbox2]
    gt_labels = [torch.randint(0, 18, [10], device='cuda') for i in range(2)]
    pts_semantic_mask = [
        torch.randint(0, 18, [40000], device='cuda') for i in range(2)
    ]
    pts_instance_mask = [
        torch.randint(0, 10, [40000], device='cuda') for i in range(2)
    ]
    losses = self.loss(ret_dict, points, gt_bboxes, gt_labels,
                       pts_semantic_mask, pts_instance_mask)
    assert losses['vote_loss'] >= 0
    assert losses['objectness_loss'] >= 0
    assert losses['semantic_loss'] >= 0
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
    assert losses['size_class_loss'] >= 0
    assert losses['size_res_loss'] >= 0

    # test multiclass_nms_single
    obj_scores = torch.rand([256], device='cuda')
    sem_scores = torch.rand([256, 18], device='cuda')
    points = torch.rand([40000, 3], device='cuda')
    bbox = torch.rand([256, 7], device='cuda')
    input_meta = dict(box_type_3d=DepthInstance3DBoxes)
    bbox_selected, score_selected, labels = self.multiclass_nms_single(
        obj_scores, sem_scores, bbox, points, input_meta)
    assert bbox_selected.shape[0] >= 0
    assert bbox_selected.shape[1] == 7
    assert score_selected.shape[0] >= 0
    assert labels.shape[0] >= 0

    # test get_boxes
    points = torch.rand([1, 40000, 4], device='cuda')
    seed_points = torch.rand([1, 1024, 3], device='cuda')
    seed_indices = torch.randint(0, 40000, [1, 1024], device='cuda')
    vote_points = torch.rand([1, 1024, 3], device='cuda')
    vote_features = torch.rand([1, 256, 1024], device='cuda')
    aggregated_points = torch.rand([1, 256, 3], device='cuda')
    aggregated_indices = torch.range(0, 256, device='cuda')
    obj_scores = torch.rand([1, 256, 2], device='cuda')
    center = torch.rand([1, 256, 3], device='cuda')
    dir_class = torch.rand([1, 256, 1], device='cuda')
    dir_res_norm = torch.rand([1, 256, 1], device='cuda')
    dir_res = torch.rand([1, 256, 1], device='cuda')
    size_class = torch.rand([1, 256, 18], device='cuda')
    size_res = torch.rand([1, 256, 18, 3], device='cuda')
    sem_scores = torch.rand([1, 256, 18], device='cuda')
    bbox_preds = dict(
        seed_points=seed_points,
        seed_indices=seed_indices,
        vote_points=vote_points,
        vote_features=vote_features,
        aggregated_points=aggregated_points,
        aggregated_indices=aggregated_indices,
        obj_scores=obj_scores,
        center=center,
        dir_class=dir_class,
        dir_res_norm=dir_res_norm,
        dir_res=dir_res,
        size_class=size_class,
        size_res=size_res,
        sem_scores=sem_scores)
    results = self.get_bboxes(points, bbox_preds, [input_meta])
    assert results[0][0].tensor.shape[0] >= 0
    assert results[0][0].tensor.shape[1] == 7
    assert results[0][1].shape[0] >= 0
    assert results[0][2].shape[0] >= 0


def test_parta2_bbox_head():
    parta2_bbox_head_cfg = _get_parta2_bbox_head_cfg(
        './parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
    self = build_head(parta2_bbox_head_cfg)
    seg_feats = torch.rand([256, 14, 14, 14, 16])
    part_feats = torch.rand([256, 14, 14, 14, 4])

    cls_score, bbox_pred = self.forward(seg_feats, part_feats)
    assert cls_score.shape == (256, 1)
    assert bbox_pred.shape == (256, 7)


def test_part_aggregation_ROI_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    roi_head_cfg = _get_roi_head_cfg(
        'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
    self = build_head(roi_head_cfg).cuda()
379
380
381
382
383
384
385
386
387
388
389

    features = np.load('./tests/test_samples/parta2_roihead_inputs.npz')
    seg_features = torch.tensor(
        features['seg_features'], dtype=torch.float32, device='cuda')
    feats_dict = dict(seg_features=seg_features)

    voxels = torch.tensor(
        features['voxels'], dtype=torch.float32, device='cuda')
    num_points = torch.ones([500], device='cuda')
    coors = torch.zeros([500, 4], device='cuda')
    voxel_centers = torch.zeros([500, 3], device='cuda')
liyinhao's avatar
liyinhao committed
390
391
392
393
394
395
396
397
    box_type_3d = LiDARInstance3DBoxes
    img_metas = [dict(box_type_3d=box_type_3d)]
    voxels_dict = dict(
        voxels=voxels,
        num_points=num_points,
        coors=coors,
        voxel_centers=voxel_centers)

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    pred_bboxes = LiDARInstance3DBoxes(
        torch.tensor(
            [[0.3990, 0.5167, 0.0249, 0.9401, 0.9459, 0.7967, 0.4150],
             [0.8203, 0.2290, 0.9096, 0.1183, 0.0752, 0.4092, 0.9601],
             [0.2093, 0.1940, 0.8909, 0.4387, 0.3570, 0.5454, 0.8299],
             [0.2099, 0.7684, 0.4290, 0.2117, 0.6606, 0.1654, 0.4250],
             [0.9927, 0.6964, 0.2472, 0.7028, 0.7494, 0.9303, 0.0494]],
            dtype=torch.float32,
            device='cuda'))
    pred_scores = torch.tensor([0.9722, 0.7910, 0.4690, 0.3300, 0.3345],
                               dtype=torch.float32,
                               device='cuda')
    pred_labels = torch.tensor([0, 1, 0, 2, 1],
                               dtype=torch.int64,
                               device='cuda')
    pred_clses = torch.tensor(
        [[0.7874, 0.1344, 0.2190], [0.8193, 0.6969, 0.7304],
         [0.2328, 0.9028, 0.3900], [0.6177, 0.5012, 0.2330],
         [0.8985, 0.4894, 0.7152]],
        dtype=torch.float32,
        device='cuda')
liyinhao's avatar
liyinhao committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    proposal = dict(
        boxes_3d=pred_bboxes,
        scores_3d=pred_scores,
        labels_3d=pred_labels,
        cls_preds=pred_clses)
    proposal_list = [proposal]
    gt_bboxes_3d = [LiDARInstance3DBoxes(torch.rand([5, 7], device='cuda'))]
    gt_labels_3d = [torch.randint(0, 3, [5], device='cuda')]

    losses = self.forward_train(feats_dict, voxels_dict, {}, proposal_list,
                                gt_bboxes_3d, gt_labels_3d)
    assert losses['loss_seg'] >= 0
    assert losses['loss_part'] >= 0
    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0
    assert losses['loss_corner'] >= 0

    bbox_results = self.simple_test(feats_dict, voxels_dict, img_metas,
                                    proposal_list)
438
439
440
441
442
443
    boxes_3d = bbox_results[0]['boxes_3d']
    scores_3d = bbox_results[0]['scores_3d']
    labels_3d = bbox_results[0]['labels_3d']
    assert boxes_3d.tensor.shape == (12, 7)
    assert scores_3d.shape == (12, )
    assert labels_3d.shape == (12, )
liyinhao's avatar
liyinhao committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475


def test_free_anchor_3D_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    pts_bbox_head_cfg = _get_pts_bbox_head_cfg(
        './free_anchor/hv_pointpillars_fpn_sbn-all_'
        'free-anchor_4x8_2x_nus-3d.py')
    self = build_head(pts_bbox_head_cfg)
    cls_scores = [
        torch.rand([4, 80, 200, 200], device='cuda') for i in range(3)
    ]
    bbox_preds = [
        torch.rand([4, 72, 200, 200], device='cuda') for i in range(3)
    ]
    dir_cls_preds = [
        torch.rand([4, 16, 200, 200], device='cuda') for i in range(3)
    ]
    gt_bboxes = [
        LiDARInstance3DBoxes(torch.rand([8, 9], device='cuda'), box_dim=9)
        for i in range(4)
    ]
    gt_labels = [
        torch.randint(0, 10, [8], device='cuda', dtype=torch.long)
        for i in range(4)
    ]
    input_metas = [0]
    losses = self.loss(cls_scores, bbox_preds, dir_cls_preds, gt_bboxes,
                       gt_labels, input_metas, None)
    assert losses['positive_bag_loss'] >= 0
    assert losses['negative_bag_loss'] >= 0
encore-zhou's avatar
encore-zhou committed
476
477
478
479
480
481
482
483
484
485
486
487


def test_primitive_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)

    primitive_head_cfg = dict(
        type='PrimitiveHead',
        num_dims=2,
        num_classes=18,
        primitive_mode='z',
488
        vote_module_cfg=dict(
encore-zhou's avatar
encore-zhou committed
489
490
491
492
493
494
495
496
497
498
499
500
501
            in_channels=256,
            vote_per_seed=1,
            gt_per_seed=1,
            conv_channels=(256, 256),
            conv_cfg=dict(type='Conv1d'),
            norm_cfg=dict(type='BN1d'),
            norm_feats=True,
            vote_loss=dict(
                type='ChamferDistance',
                mode='l1',
                reduction='none',
                loss_dst_weight=10.0)),
        vote_aggregation_cfg=dict(
502
            type='PointSAModule',
encore-zhou's avatar
encore-zhou committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
            num_point=64,
            radius=0.3,
            num_sample=16,
            mlp_channels=[256, 128, 128, 128],
            use_xyz=True,
            normalize_xyz=True),
        feat_channels=(128, 128),
        conv_cfg=dict(type='Conv1d'),
        norm_cfg=dict(type='BN1d'),
        objectness_loss=dict(
            type='CrossEntropyLoss',
            class_weight=[0.4, 0.6],
            reduction='mean',
            loss_weight=1.0),
        center_loss=dict(
            type='ChamferDistance',
            mode='l1',
            reduction='sum',
            loss_src_weight=1.0,
            loss_dst_weight=1.0),
        semantic_reg_loss=dict(
            type='ChamferDistance',
            mode='l1',
            reduction='sum',
            loss_src_weight=1.0,
            loss_dst_weight=1.0),
        semantic_cls_loss=dict(
            type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
        train_cfg=dict(
            dist_thresh=0.2,
            var_thresh=1e-2,
            lower_thresh=1e-6,
            num_point=100,
            num_point_line=10,
            line_thresh=0.2))

    self = build_head(primitive_head_cfg).cuda()
    fp_xyz = [torch.rand([2, 64, 3], dtype=torch.float32).cuda()]
    hd_features = torch.rand([2, 256, 64], dtype=torch.float32).cuda()
    fp_indices = [torch.randint(0, 64, [2, 64]).cuda()]
    input_dict = dict(
        fp_xyz_net0=fp_xyz, hd_feature=hd_features, fp_indices_net0=fp_indices)

    # test forward
    ret_dict = self(input_dict, 'vote')
    assert ret_dict['center_z'].shape == torch.Size([2, 64, 3])
    assert ret_dict['size_residuals_z'].shape == torch.Size([2, 64, 2])
    assert ret_dict['sem_cls_scores_z'].shape == torch.Size([2, 64, 18])
    assert ret_dict['aggregated_points_z'].shape == torch.Size([2, 64, 3])

    # test loss
    points = torch.rand([2, 1024, 3], dtype=torch.float32).cuda()
    ret_dict['seed_points'] = fp_xyz[0]
    ret_dict['seed_indices'] = fp_indices[0]

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    gt_bboxes_3d = [
        DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda()),
        DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda())
    ]
    gt_labels_3d = torch.randint(0, 18, [2, 4]).cuda()
    gt_labels_3d = [gt_labels_3d[0], gt_labels_3d[1]]
    pts_semantic_mask = torch.randint(0, 19, [2, 1024]).cuda()
    pts_semantic_mask = [pts_semantic_mask[0], pts_semantic_mask[1]]
    pts_instance_mask = torch.randint(0, 4, [2, 1024]).cuda()
    pts_instance_mask = [pts_instance_mask[0], pts_instance_mask[1]]

    loss_input_dict = dict(
        bbox_preds=ret_dict,
        points=points,
        gt_bboxes_3d=gt_bboxes_3d,
        gt_labels_3d=gt_labels_3d,
        pts_semantic_mask=pts_semantic_mask,
        pts_instance_mask=pts_instance_mask)
    losses_dict = self.loss(**loss_input_dict)

    assert losses_dict['flag_loss_z'] >= 0
    assert losses_dict['vote_loss_z'] >= 0
    assert losses_dict['center_loss_z'] >= 0
    assert losses_dict['size_loss_z'] >= 0
    assert losses_dict['sem_loss_z'] >= 0

    # 'Primitive_mode' should be one of ['z', 'xy', 'line']
    with pytest.raises(AssertionError):
587
        primitive_head_cfg['vote_module_cfg']['in_channels'] = 'xyz'
encore-zhou's avatar
encore-zhou committed
588
        build_head(primitive_head_cfg)
encore-zhou's avatar
encore-zhou committed
589
590
591
592
593
594
595


def test_h3d_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)

596
    h3d_head_cfg = _get_roi_head_cfg('h3dnet/h3dnet_8x3_scannet-3d-18class.py')
597
598
599
600
601
602
603

    num_point = 128
    num_proposal = 64
    h3d_head_cfg.primitive_list[0].vote_aggregation_cfg.num_point = num_point
    h3d_head_cfg.primitive_list[1].vote_aggregation_cfg.num_point = num_point
    h3d_head_cfg.primitive_list[2].vote_aggregation_cfg.num_point = num_point
    h3d_head_cfg.bbox_head.num_proposal = num_proposal
encore-zhou's avatar
encore-zhou committed
604
605
606
    self = build_head(h3d_head_cfg).cuda()

    # prepare roi outputs
607
608
609
610
611
612
613
    fp_xyz = [torch.rand([1, num_point, 3], dtype=torch.float32).cuda()]
    hd_features = torch.rand([1, 256, num_point], dtype=torch.float32).cuda()
    fp_indices = [torch.randint(0, 128, [1, num_point]).cuda()]
    aggregated_points = torch.rand([1, num_proposal, 3],
                                   dtype=torch.float32).cuda()
    aggregated_features = torch.rand([1, 128, num_proposal],
                                     dtype=torch.float32).cuda()
614
    proposal_list = torch.cat([
615
616
617
        torch.rand([1, num_proposal, 3], dtype=torch.float32).cuda() * 4 - 2,
        torch.rand([1, num_proposal, 3], dtype=torch.float32).cuda() * 4,
        torch.zeros([1, num_proposal, 1]).cuda()
encore-zhou's avatar
encore-zhou committed
618
619
620
621
622
623
624
625
626
627
    ],
                              dim=-1)

    input_dict = dict(
        fp_xyz_net0=fp_xyz,
        hd_feature=hd_features,
        aggregated_points=aggregated_points,
        aggregated_features=aggregated_features,
        seed_points=fp_xyz[0],
        seed_indices=fp_indices[0],
628
        proposal_list=proposal_list)
encore-zhou's avatar
encore-zhou committed
629
630
631
632
633
634
635
636
637

    # prepare gt label
    from mmdet3d.core.bbox import DepthInstance3DBoxes
    gt_bboxes_3d = [
        DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda()),
        DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda())
    ]
    gt_labels_3d = torch.randint(0, 18, [1, 4]).cuda()
    gt_labels_3d = [gt_labels_3d[0]]
638
    pts_semantic_mask = torch.randint(0, 19, [1, num_point]).cuda()
encore-zhou's avatar
encore-zhou committed
639
    pts_semantic_mask = [pts_semantic_mask[0]]
640
    pts_instance_mask = torch.randint(0, 4, [1, num_point]).cuda()
encore-zhou's avatar
encore-zhou committed
641
    pts_instance_mask = [pts_instance_mask[0]]
642
    points = torch.rand([1, num_point, 3], dtype=torch.float32).cuda()
encore-zhou's avatar
encore-zhou committed
643
644

    # prepare rpn targets
645
646
647
    vote_targets = torch.rand([1, num_point, 9], dtype=torch.float32).cuda()
    vote_target_masks = torch.rand([1, num_point], dtype=torch.float32).cuda()
    size_class_targets = torch.rand([1, num_proposal],
encore-zhou's avatar
encore-zhou committed
648
                                    dtype=torch.float32).cuda().long()
649
650
651
652
653
    size_res_targets = torch.rand([1, num_proposal, 3],
                                  dtype=torch.float32).cuda()
    dir_class_targets = torch.rand([1, num_proposal],
                                   dtype=torch.float32).cuda().long()
    dir_res_targets = torch.rand([1, num_proposal], dtype=torch.float32).cuda()
encore-zhou's avatar
encore-zhou committed
654
    center_targets = torch.rand([1, 4, 3], dtype=torch.float32).cuda()
655
656
    mask_targets = torch.rand([1, num_proposal],
                              dtype=torch.float32).cuda().long()
encore-zhou's avatar
encore-zhou committed
657
    valid_gt_masks = torch.rand([1, 4], dtype=torch.float32).cuda()
658
    objectness_targets = torch.rand([1, num_proposal],
encore-zhou's avatar
encore-zhou committed
659
                                    dtype=torch.float32).cuda().long()
660
661
662
663
    objectness_weights = torch.rand([1, num_proposal],
                                    dtype=torch.float32).cuda()
    box_loss_weights = torch.rand([1, num_proposal],
                                  dtype=torch.float32).cuda()
encore-zhou's avatar
encore-zhou committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
    valid_gt_weights = torch.rand([1, 4], dtype=torch.float32).cuda()

    targets = (vote_targets, vote_target_masks, size_class_targets,
               size_res_targets, dir_class_targets, dir_res_targets,
               center_targets, mask_targets, valid_gt_masks,
               objectness_targets, objectness_weights, box_loss_weights,
               valid_gt_weights)

    input_dict['targets'] = targets

    # train forward
    ret_dict = self.forward_train(
        input_dict,
        points=points,
        gt_bboxes_3d=gt_bboxes_3d,
        gt_labels_3d=gt_labels_3d,
        pts_semantic_mask=pts_semantic_mask,
        pts_instance_mask=pts_instance_mask,
        img_metas=None)

    assert ret_dict['flag_loss_z'] >= 0
    assert ret_dict['vote_loss_z'] >= 0
    assert ret_dict['center_loss_z'] >= 0
    assert ret_dict['size_loss_z'] >= 0
    assert ret_dict['sem_loss_z'] >= 0
689
    assert ret_dict['objectness_loss_optimized'] >= 0
encore-zhou's avatar
encore-zhou committed
690
    assert ret_dict['primitive_sem_matching_loss'] >= 0
691
692


693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
def test_center_head():
    tasks = [
        dict(num_class=1, class_names=['car']),
        dict(num_class=2, class_names=['truck', 'construction_vehicle']),
        dict(num_class=2, class_names=['bus', 'trailer']),
        dict(num_class=1, class_names=['barrier']),
        dict(num_class=2, class_names=['motorcycle', 'bicycle']),
        dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),
    ]
    bbox_cfg = dict(
        type='CenterPointBBoxCoder',
        post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        max_num=500,
        score_threshold=0.1,
        pc_range=[-51.2, -51.2],
        out_size_factor=8,
        voxel_size=[0.2, 0.2])
    train_cfg = dict(
        grid_size=[1024, 1024, 40],
        point_cloud_range=[-51.2, -51.2, -5., 51.2, 51.2, 3.],
        voxel_size=[0.1, 0.1, 0.2],
        out_size_factor=8,
        dense_reg=1,
        gaussian_overlap=0.1,
        max_objs=500,
        code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0],
        min_radius=2)
    test_cfg = dict(
        post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        max_per_img=500,
        max_pool_nms=False,
        min_radius=[4, 12, 10, 1, 0.85, 0.175],
        post_max_size=83,
        score_threshold=0.1,
        pc_range=[-51.2, -51.2],
        out_size_factor=8,
        voxel_size=[0.2, 0.2],
        nms_type='circle')
    center_head_cfg = dict(
        type='CenterHead',
        in_channels=sum([256, 256]),
        tasks=tasks,
        train_cfg=train_cfg,
        test_cfg=test_cfg,
        bbox_coder=bbox_cfg,
        common_heads=dict(
            reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2), vel=(2, 2)),
        share_conv_channel=64,
        norm_bbox=True)

    center_head = build_head(center_head_cfg)

    x = torch.rand([2, 512, 128, 128])
    output = center_head([x])
    for i in range(6):
        assert output[i][0]['reg'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['height'].shape == torch.Size([2, 1, 128, 128])
        assert output[i][0]['dim'].shape == torch.Size([2, 3, 128, 128])
        assert output[i][0]['rot'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['vel'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['heatmap'].shape == torch.Size(
            [2, tasks[i]['num_class'], 128, 128])

    # test get_bboxes
    img_metas = [
        dict(box_type_3d=LiDARInstance3DBoxes),
        dict(box_type_3d=LiDARInstance3DBoxes)
    ]
    ret_lists = center_head.get_bboxes(output, img_metas)
    for ret_list in ret_lists:
        assert ret_list[0].tensor.shape[0] <= 500
        assert ret_list[1].shape[0] <= 500
        assert ret_list[2].shape[0] <= 500


def test_dcn_center_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and CUDA')
    set_random_seed(0)
    tasks = [
        dict(num_class=1, class_names=['car']),
        dict(num_class=2, class_names=['truck', 'construction_vehicle']),
        dict(num_class=2, class_names=['bus', 'trailer']),
        dict(num_class=1, class_names=['barrier']),
        dict(num_class=2, class_names=['motorcycle', 'bicycle']),
        dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),
    ]
    voxel_size = [0.2, 0.2, 8]
    dcn_center_head_cfg = dict(
        type='CenterHead',
        in_channels=sum([128, 128, 128]),
        tasks=[
            dict(num_class=1, class_names=['car']),
            dict(num_class=2, class_names=['truck', 'construction_vehicle']),
            dict(num_class=2, class_names=['bus', 'trailer']),
            dict(num_class=1, class_names=['barrier']),
            dict(num_class=2, class_names=['motorcycle', 'bicycle']),
            dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),
        ],
        common_heads={
            'reg': (2, 2),
            'height': (1, 2),
            'dim': (3, 2),
            'rot': (2, 2),
            'vel': (2, 2)
        },
        share_conv_channel=64,
        bbox_coder=dict(
            type='CenterPointBBoxCoder',
            post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
            max_num=500,
            score_threshold=0.1,
            pc_range=[-51.2, -51.2],
            out_size_factor=4,
            voxel_size=voxel_size[:2],
            code_size=9),
        seperate_head=dict(
            type='DCNSeperateHead',
            dcn_config=dict(
                type='DCN',
                in_channels=64,
                out_channels=64,
                kernel_size=3,
                padding=1,
                groups=4,
                bias=True),
            init_bias=-2.19,
            final_kernel=3),
        loss_cls=dict(type='GaussianFocalLoss', reduction='mean'),
        loss_bbox=dict(type='L1Loss', reduction='none', loss_weight=0.25),
        norm_bbox=True)
    # model training and testing settings
    train_cfg = dict(
        grid_size=[512, 512, 1],
        point_cloud_range=[-51.2, -51.2, -5., 51.2, 51.2, 3.],
        voxel_size=voxel_size,
        out_size_factor=4,
        dense_reg=1,
        gaussian_overlap=0.1,
        max_objs=500,
        min_radius=2,
        code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0])

    test_cfg = dict(
        post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        max_per_img=500,
        max_pool_nms=False,
        min_radius=[4, 12, 10, 1, 0.85, 0.175],
        post_max_size=83,
        score_threshold=0.1,
        pc_range=[-51.2, -51.2],
        out_size_factor=4,
        voxel_size=voxel_size[:2],
        nms_type='circle')
    dcn_center_head_cfg.update(train_cfg=train_cfg, test_cfg=test_cfg)

    dcn_center_head = build_head(dcn_center_head_cfg).cuda()

    x = torch.ones([2, 384, 128, 128]).cuda()
    output = dcn_center_head([x])
    for i in range(6):
        assert output[i][0]['reg'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['height'].shape == torch.Size([2, 1, 128, 128])
        assert output[i][0]['dim'].shape == torch.Size([2, 3, 128, 128])
        assert output[i][0]['rot'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['vel'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['heatmap'].shape == torch.Size(
            [2, tasks[i]['num_class'], 128, 128])

    # Test loss.
    gt_bboxes_0 = LiDARInstance3DBoxes(torch.rand([10, 9]).cuda(), box_dim=9)
    gt_bboxes_1 = LiDARInstance3DBoxes(torch.rand([20, 9]).cuda(), box_dim=9)
    gt_labels_0 = torch.randint(1, 11, [10]).cuda()
    gt_labels_1 = torch.randint(1, 11, [20]).cuda()
    gt_bboxes_3d = [gt_bboxes_0, gt_bboxes_1]
    gt_labels_3d = [gt_labels_0, gt_labels_1]
    loss = dcn_center_head.loss(gt_bboxes_3d, gt_labels_3d, output)
870
871
872
873
874
    for key, item in loss.items():
        if 'heatmap' in key:
            assert item >= 0
        else:
            assert torch.sum(item) >= 0
875
876
877
878
879
880
881
882
883
884
885
886
887

    # test get_bboxes
    img_metas = [
        dict(box_type_3d=LiDARInstance3DBoxes),
        dict(box_type_3d=LiDARInstance3DBoxes)
    ]
    ret_lists = dcn_center_head.get_bboxes(output, img_metas)
    for ret_list in ret_lists:
        assert ret_list[0].tensor.shape[0] <= 500
        assert ret_list[1].shape[0] <= 500
        assert ret_list[2].shape[0] <= 500


888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
def test_ssd3d_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    ssd3d_head_cfg = _get_vote_head_cfg('3dssd/3dssd_kitti-3d-car.py')
    ssd3d_head_cfg.vote_module_cfg.num_points = 64
    self = build_head(ssd3d_head_cfg).cuda()
    sa_xyz = [torch.rand([2, 128, 3], dtype=torch.float32).cuda()]
    sa_features = [torch.rand([2, 256, 128], dtype=torch.float32).cuda()]
    sa_indices = [torch.randint(0, 64, [2, 128]).cuda()]

    input_dict = dict(
        sa_xyz=sa_xyz, sa_features=sa_features, sa_indices=sa_indices)

    # test forward
    ret_dict = self(input_dict, 'spec')
    assert ret_dict['center'].shape == torch.Size([2, 64, 3])
    assert ret_dict['obj_scores'].shape == torch.Size([2, 1, 64])
    assert ret_dict['size'].shape == torch.Size([2, 64, 3])
    assert ret_dict['dir_res'].shape == torch.Size([2, 64, 12])

    # test loss
    points = [torch.rand([4000, 4], device='cuda') for i in range(2)]
    gt_bbox1 = LiDARInstance3DBoxes(torch.rand([5, 7], device='cuda'))
    gt_bbox2 = LiDARInstance3DBoxes(torch.rand([5, 7], device='cuda'))
    gt_bboxes = [gt_bbox1, gt_bbox2]
    gt_labels = [
        torch.zeros([5], dtype=torch.long, device='cuda') for i in range(2)
    ]
    img_metas = [dict(box_type_3d=LiDARInstance3DBoxes) for i in range(2)]
    losses = self.loss(
        ret_dict, points, gt_bboxes, gt_labels, img_metas=img_metas)

    assert losses['centerness_loss'] >= 0
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
    assert losses['size_res_loss'] >= 0
    assert losses['corner_loss'] >= 0
    assert losses['vote_loss'] >= 0

    # test multiclass_nms_single
    sem_scores = ret_dict['obj_scores'].transpose(1, 2)[0]
    obj_scores = sem_scores.max(-1)[0]
    bbox = self.bbox_coder.decode(ret_dict)[0]
    input_meta = img_metas[0]
    bbox_selected, score_selected, labels = self.multiclass_nms_single(
        obj_scores, sem_scores, bbox, points[0], input_meta)
    assert bbox_selected.shape[0] >= 0
    assert bbox_selected.shape[1] == 7
    assert score_selected.shape[0] >= 0
    assert labels.shape[0] >= 0

    # test get_boxes
    points = torch.stack(points, 0)
    results = self.get_bboxes(points, ret_dict, img_metas)
    assert results[0][0].tensor.shape[0] >= 0
    assert results[0][0].tensor.shape[1] == 7
    assert results[0][1].shape[0] >= 0
    assert results[0][2].shape[0] >= 0
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046


def test_shape_aware_head_loss():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    bbox_head_cfg = _get_pts_bbox_head_cfg(
        'ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py')
    # modify bn config to avoid bugs caused by syncbn
    for task in bbox_head_cfg['tasks']:
        task['norm_cfg'] = dict(type='BN2d')

    from mmdet3d.models.builder import build_head
    self = build_head(bbox_head_cfg)
    self.cuda()
    assert len(self.heads) == 4
    assert isinstance(self.heads[0].conv_cls, torch.nn.modules.conv.Conv2d)
    assert self.heads[0].conv_cls.in_channels == 64
    assert self.heads[0].conv_cls.out_channels == 36
    assert self.heads[0].conv_reg.out_channels == 28
    assert self.heads[0].conv_dir_cls.out_channels == 8

    # test forward
    feats = list()
    feats.append(torch.rand([2, 384, 200, 200], dtype=torch.float32).cuda())
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)
    assert cls_score[0].shape == torch.Size([2, 420000, 9])
    assert bbox_pred[0].shape == torch.Size([2, 420000, 7])
    assert dir_cls_preds[0].shape == torch.Size([2, 420000, 2])

    # test loss
    gt_bboxes = [
        LiDARInstance3DBoxes(
            torch.tensor(
                [[-14.5695, -6.4169, -2.1054, 1.8830, 4.6720, 1.4840, 1.5587],
                 [25.7215, 3.4581, -1.3456, 1.6720, 4.4090, 1.5830, 1.5301]],
                dtype=torch.float32).cuda()),
        LiDARInstance3DBoxes(
            torch.tensor(
                [[-50.763, -3.5517, -0.99658, 1.7430, 4.4020, 1.6990, 1.7874],
                 [-68.720, 0.033, -0.75276, 1.7860, 4.9100, 1.6610, 1.7525]],
                dtype=torch.float32).cuda())
    ]
    gt_labels = list(torch.tensor([[4, 4], [4, 4]], dtype=torch.int64).cuda())
    input_metas = [{
        'sample_idx': 1234
    }, {
        'sample_idx': 2345
    }]  # fake input_metas

    losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
                       gt_labels, input_metas)

    assert losses['loss_cls'][0] > 0
    assert losses['loss_bbox'][0] > 0
    assert losses['loss_dir'][0] > 0

    # test empty ground truth case
    gt_bboxes = list(torch.empty((2, 0, 7)).cuda())
    gt_labels = list(torch.empty((2, 0)).cuda())
    empty_gt_losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
                                gt_labels, input_metas)
    assert empty_gt_losses['loss_cls'][0] > 0
    assert empty_gt_losses['loss_bbox'][0] == 0
    assert empty_gt_losses['loss_dir'][0] == 0


def test_shape_aware_head_getboxes():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    bbox_head_cfg = _get_pts_bbox_head_cfg(
        'ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py')
    # modify bn config to avoid bugs caused by syncbn
    for task in bbox_head_cfg['tasks']:
        task['norm_cfg'] = dict(type='BN2d')

    from mmdet3d.models.builder import build_head
    self = build_head(bbox_head_cfg)
    self.cuda()

    feats = list()
    feats.append(torch.rand([2, 384, 200, 200], dtype=torch.float32).cuda())
    # fake input_metas
    input_metas = [{
        'sample_idx': 1234,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
    }, {
        'sample_idx': 2345,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
    }]
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)

    # test get_bboxes
    cls_score[0] -= 1.5  # too many positive samples may cause cuda oom
    result_list = self.get_bboxes(cls_score, bbox_pred, dir_cls_preds,
                                  input_metas)
    assert len(result_list[0][1]) > 0  # ensure not all boxes are filtered
    assert (result_list[0][1] > 0.3).all()