train_mixins.py 16.3 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import numpy as np
import torch

zhangwenwei's avatar
zhangwenwei committed
4
from mmdet3d.core import limit_period
zhangwenwei's avatar
zhangwenwei committed
5
from mmdet.core import images_to_levels, multi_apply
zhangwenwei's avatar
zhangwenwei committed
6
7
8


class AnchorTrainMixin(object):
9
    """Mixin class for target assigning of dense heads."""
zhangwenwei's avatar
zhangwenwei committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23

    def anchor_target_3d(self,
                         anchor_list,
                         gt_bboxes_list,
                         input_metas,
                         gt_bboxes_ignore_list=None,
                         gt_labels_list=None,
                         label_channels=1,
                         num_classes=1,
                         sampling=True):
        """Compute regression and classification targets for anchors.

        Args:
            anchor_list (list[list]): Multi level anchors of each image.
zhangwenwei's avatar
zhangwenwei committed
24
            gt_bboxes_list (list[:obj:`BaseInstance3DBoxes`]): Ground truth
wuyuefeng's avatar
wuyuefeng committed
25
                bboxes of each image.
wuyuefeng's avatar
wuyuefeng committed
26
27
            input_metas (list[dict]): Meta info of each image.
            gt_bboxes_ignore_list (None | list): Ignore list of gt bboxes.
liyinhao's avatar
liyinhao committed
28
            gt_labels_list (list[torch.Tensor]): Gt labels of batches.
wuyuefeng's avatar
wuyuefeng committed
29
30
31
            label_channels (int): The channel of labels.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.
zhangwenwei's avatar
zhangwenwei committed
32
33

        Returns:
34
35
36
37
38
            tuple (list, list, list, list, list, list, int, int):
                Anchor targets, including labels, label weights,
                bbox targets, bbox weights, direction targets,
                direction weights, number of postive anchors and
                number of negative anchors.
zhangwenwei's avatar
zhangwenwei committed
39
40
41
42
        """
        num_imgs = len(input_metas)
        assert len(anchor_list) == num_imgs

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
        if isinstance(anchor_list[0][0], list):
            # sizes of anchors are different
            # anchor number of a single level
            num_level_anchors = [
                sum([anchor.size(0) for anchor in anchors])
                for anchors in anchor_list[0]
            ]
            for i in range(num_imgs):
                anchor_list[i] = anchor_list[i][0]
        else:
            # anchor number of multi levels
            num_level_anchors = [
                anchors.view(-1, self.box_code_size).size(0)
                for anchors in anchor_list[0]
            ]
            # concat all level anchors and flags to a single tensor
            for i in range(num_imgs):
                anchor_list[i] = torch.cat(anchor_list[i])
zhangwenwei's avatar
zhangwenwei committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

        # compute targets for each image
        if gt_bboxes_ignore_list is None:
            gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
        if gt_labels_list is None:
            gt_labels_list = [None for _ in range(num_imgs)]

        (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
         all_dir_targets, all_dir_weights, pos_inds_list,
         neg_inds_list) = multi_apply(
             self.anchor_target_3d_single,
             anchor_list,
             gt_bboxes_list,
             gt_bboxes_ignore_list,
             gt_labels_list,
             input_metas,
             label_channels=label_channels,
             num_classes=num_classes,
             sampling=sampling)

        # no valid anchors
        if any([labels is None for labels in all_labels]):
            return None
        # sampled anchors of all images
        num_total_pos = sum([max(inds.numel(), 1) for inds in pos_inds_list])
        num_total_neg = sum([max(inds.numel(), 1) for inds in neg_inds_list])
        # split targets to a list w.r.t. multiple levels
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        dir_targets_list = images_to_levels(all_dir_targets, num_level_anchors)
        dir_weights_list = images_to_levels(all_dir_weights, num_level_anchors)
        return (labels_list, label_weights_list, bbox_targets_list,
                bbox_weights_list, dir_targets_list, dir_weights_list,
                num_total_pos, num_total_neg)

    def anchor_target_3d_single(self,
                                anchors,
                                gt_bboxes,
                                gt_bboxes_ignore,
                                gt_labels,
                                input_meta,
                                label_channels=1,
                                num_classes=1,
                                sampling=True):
wuyuefeng's avatar
wuyuefeng committed
110
111
112
        """Compute targets of anchors in single batch.

        Args:
liyinhao's avatar
liyinhao committed
113
            anchors (torch.Tensor): Concatenated multi-level anchor.
zhangwenwei's avatar
zhangwenwei committed
114
            gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes.
liyinhao's avatar
liyinhao committed
115
116
            gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes.
            gt_labels (torch.Tensor): Gt class labels.
wuyuefeng's avatar
wuyuefeng committed
117
118
119
120
121
122
            input_meta (dict): Meta info of each image.
            label_channels (int): The channel of labels.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.

        Returns:
123
            tuple[torch.Tensor]: Anchor targets.
wuyuefeng's avatar
wuyuefeng committed
124
        """
125
126
        if isinstance(self.bbox_assigner,
                      list) and (not isinstance(anchors, list)):
zhangwenwei's avatar
zhangwenwei committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
            feat_size = anchors.size(0) * anchors.size(1) * anchors.size(2)
            rot_angles = anchors.size(-2)
            assert len(self.bbox_assigner) == anchors.size(-3)
            (total_labels, total_label_weights, total_bbox_targets,
             total_bbox_weights, total_dir_targets, total_dir_weights,
             total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], []
            current_anchor_num = 0
            for i, assigner in enumerate(self.bbox_assigner):
                current_anchors = anchors[..., i, :, :].reshape(
                    -1, self.box_code_size)
                current_anchor_num += current_anchors.size(0)
                if self.assign_per_class:
                    gt_per_cls = (gt_labels == i)
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes[gt_per_cls, :],
                        gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
143
                        num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
144
145
146
                else:
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
147
                        gt_labels, input_meta, num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

                (labels, label_weights, bbox_targets, bbox_weights,
                 dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
                total_labels.append(labels.reshape(feat_size, 1, rot_angles))
                total_label_weights.append(
                    label_weights.reshape(feat_size, 1, rot_angles))
                total_bbox_targets.append(
                    bbox_targets.reshape(feat_size, 1, rot_angles,
                                         anchors.size(-1)))
                total_bbox_weights.append(
                    bbox_weights.reshape(feat_size, 1, rot_angles,
                                         anchors.size(-1)))
                total_dir_targets.append(
                    dir_targets.reshape(feat_size, 1, rot_angles))
                total_dir_weights.append(
                    dir_weights.reshape(feat_size, 1, rot_angles))
                total_pos_inds.append(pos_inds)
                total_neg_inds.append(neg_inds)

            total_labels = torch.cat(total_labels, dim=-2).reshape(-1)
            total_label_weights = torch.cat(
                total_label_weights, dim=-2).reshape(-1)
            total_bbox_targets = torch.cat(
                total_bbox_targets, dim=-3).reshape(-1, anchors.size(-1))
            total_bbox_weights = torch.cat(
                total_bbox_weights, dim=-3).reshape(-1, anchors.size(-1))
            total_dir_targets = torch.cat(
                total_dir_targets, dim=-2).reshape(-1)
            total_dir_weights = torch.cat(
                total_dir_weights, dim=-2).reshape(-1)
            total_pos_inds = torch.cat(total_pos_inds, dim=0).reshape(-1)
            total_neg_inds = torch.cat(total_neg_inds, dim=0).reshape(-1)
            return (total_labels, total_label_weights, total_bbox_targets,
                    total_bbox_weights, total_dir_targets, total_dir_weights,
                    total_pos_inds, total_neg_inds)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        elif isinstance(self.bbox_assigner, list) and isinstance(
                anchors, list):
            # class-aware anchors with different feature map sizes
            assert len(self.bbox_assigner) == len(anchors), \
                'The number of bbox assigners and anchors should be the same.'
            (total_labels, total_label_weights, total_bbox_targets,
             total_bbox_weights, total_dir_targets, total_dir_weights,
             total_pos_inds, total_neg_inds) = [], [], [], [], [], [], [], []
            current_anchor_num = 0
            for i, assigner in enumerate(self.bbox_assigner):
                current_anchors = anchors[i]
                current_anchor_num += current_anchors.size(0)
                if self.assign_per_class:
                    gt_per_cls = (gt_labels == i)
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes[gt_per_cls, :],
                        gt_bboxes_ignore, gt_labels[gt_per_cls], input_meta,
                        num_classes, sampling)
                else:
                    anchor_targets = self.anchor_target_single_assigner(
                        assigner, current_anchors, gt_bboxes, gt_bboxes_ignore,
                        gt_labels, input_meta, num_classes, sampling)

                (labels, label_weights, bbox_targets, bbox_weights,
                 dir_targets, dir_weights, pos_inds, neg_inds) = anchor_targets
                total_labels.append(labels)
                total_label_weights.append(label_weights)
                total_bbox_targets.append(
                    bbox_targets.reshape(-1, anchors[i].size(-1)))
                total_bbox_weights.append(
                    bbox_weights.reshape(-1, anchors[i].size(-1)))
                total_dir_targets.append(dir_targets)
                total_dir_weights.append(dir_weights)
                total_pos_inds.append(pos_inds)
                total_neg_inds.append(neg_inds)

            total_labels = torch.cat(total_labels, dim=0)
            total_label_weights = torch.cat(total_label_weights, dim=0)
            total_bbox_targets = torch.cat(total_bbox_targets, dim=0)
            total_bbox_weights = torch.cat(total_bbox_weights, dim=0)
            total_dir_targets = torch.cat(total_dir_targets, dim=0)
            total_dir_weights = torch.cat(total_dir_weights, dim=0)
            total_pos_inds = torch.cat(total_pos_inds, dim=0)
            total_neg_inds = torch.cat(total_neg_inds, dim=0)
            return (total_labels, total_label_weights, total_bbox_targets,
                    total_bbox_weights, total_dir_targets, total_dir_weights,
                    total_pos_inds, total_neg_inds)
zhangwenwei's avatar
zhangwenwei committed
230
        else:
231
232
233
234
235
            return self.anchor_target_single_assigner(self.bbox_assigner,
                                                      anchors, gt_bboxes,
                                                      gt_bboxes_ignore,
                                                      gt_labels, input_meta,
                                                      num_classes, sampling)
zhangwenwei's avatar
zhangwenwei committed
236
237
238
239
240
241
242
243
244
245

    def anchor_target_single_assigner(self,
                                      bbox_assigner,
                                      anchors,
                                      gt_bboxes,
                                      gt_bboxes_ignore,
                                      gt_labels,
                                      input_meta,
                                      num_classes=1,
                                      sampling=True):
wuyuefeng's avatar
wuyuefeng committed
246
247
248
249
        """Assign anchors and encode positive anchors.

        Args:
            bbox_assigner (BaseAssigner): assign positive and negative boxes.
liyinhao's avatar
liyinhao committed
250
            anchors (torch.Tensor): Concatenated multi-level anchor.
zhangwenwei's avatar
zhangwenwei committed
251
            gt_bboxes (:obj:`BaseInstance3DBoxes`): Gt bboxes.
liyinhao's avatar
liyinhao committed
252
253
            gt_bboxes_ignore (torch.Tensor): Ignored gt bboxes.
            gt_labels (torch.Tensor): Gt class labels.
wuyuefeng's avatar
wuyuefeng committed
254
255
256
257
258
            input_meta (dict): Meta info of each image.
            num_classes (int): The number of classes.
            sampling (bool): Whether to sample anchors.

        Returns:
259
            tuple[torch.Tensor]: Anchor targets.
wuyuefeng's avatar
wuyuefeng committed
260
        """
zhangwenwei's avatar
zhangwenwei committed
261
262
263
264
265
266
267
268
269
        anchors = anchors.reshape(-1, anchors.size(-1))
        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        dir_targets = anchors.new_zeros((anchors.shape[0]), dtype=torch.long)
        dir_weights = anchors.new_zeros((anchors.shape[0]), dtype=torch.float)
        labels = anchors.new_zeros(num_valid_anchors, dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
        if len(gt_bboxes) > 0:
270
271
            if not isinstance(gt_bboxes, torch.Tensor):
                gt_bboxes = gt_bboxes.tensor.to(anchors.device)
zhangwenwei's avatar
zhangwenwei committed
272
273
274
275
276
277
278
279
            assign_result = bbox_assigner.assign(anchors, gt_bboxes,
                                                 gt_bboxes_ignore, gt_labels)
            sampling_result = self.bbox_sampler.sample(assign_result, anchors,
                                                       gt_bboxes)
            pos_inds = sampling_result.pos_inds
            neg_inds = sampling_result.neg_inds
        else:
            pos_inds = torch.nonzero(
zhangwenwei's avatar
zhangwenwei committed
280
                anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) > 0
zhangwenwei's avatar
zhangwenwei committed
281
282
            ).squeeze(-1).unique()
            neg_inds = torch.nonzero(
zhangwenwei's avatar
zhangwenwei committed
283
                anchors.new_zeros((anchors.shape[0], ), dtype=torch.bool) ==
zhangwenwei's avatar
zhangwenwei committed
284
285
286
287
288
                0).squeeze(-1).unique()

        if gt_labels is not None:
            labels += num_classes
        if len(pos_inds) > 0:
289
290
            pos_bbox_targets = self.bbox_coder.encode(
                sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
zhangwenwei's avatar
zhangwenwei committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
            pos_dir_targets = get_direction_target(
                sampling_result.pos_bboxes,
                pos_bbox_targets,
                self.dir_offset,
                one_hot=False)
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            dir_targets[pos_inds] = pos_dir_targets
            dir_weights[pos_inds] = 1.0

            if gt_labels is None:
                labels[pos_inds] = 1
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight

        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0
        return (labels, label_weights, bbox_targets, bbox_weights, dir_targets,
                dir_weights, pos_inds, neg_inds)


def get_direction_target(anchors,
                         reg_targets,
                         dir_offset=0,
                         num_bins=2,
                         one_hot=True):
wuyuefeng's avatar
wuyuefeng committed
322
323
324
    """Encode direction to 0 ~ num_bins-1.

    Args:
liyinhao's avatar
liyinhao committed
325
326
        anchors (torch.Tensor): Concatenated multi-level anchor.
        reg_targets (torch.Tensor): Bbox regression targets.
wuyuefeng's avatar
wuyuefeng committed
327
328
329
330
331
        dir_offset (int): Direction offset.
        num_bins (int): Number of bins to divide 2*PI.
        one_hot (bool): Whether to encode as one hot.

    Returns:
liyinhao's avatar
liyinhao committed
332
        torch.Tensor: Encoded direction targets.
wuyuefeng's avatar
wuyuefeng committed
333
    """
zhangwenwei's avatar
zhangwenwei committed
334
    rot_gt = reg_targets[..., 6] + anchors[..., 6]
zhangwenwei's avatar
zhangwenwei committed
335
    offset_rot = limit_period(rot_gt - dir_offset, 0, 2 * np.pi)
zhangwenwei's avatar
zhangwenwei committed
336
337
338
339
340
341
342
343
344
345
346
    dir_cls_targets = torch.floor(offset_rot / (2 * np.pi / num_bins)).long()
    dir_cls_targets = torch.clamp(dir_cls_targets, min=0, max=num_bins - 1)
    if one_hot:
        dir_targets = torch.zeros(
            *list(dir_cls_targets.shape),
            num_bins,
            dtype=anchors.dtype,
            device=dir_cls_targets.device)
        dir_targets.scatter_(dir_cls_targets.unsqueeze(dim=-1).long(), 1.0)
        dir_cls_targets = dir_targets
    return dir_cls_targets