shape_aware_head.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import numpy as np
import torch
from mmcv.cnn import ConvModule, bias_init_with_prob, normal_init
from torch import nn as nn

from mmdet3d.core import box3d_multiclass_nms, limit_period, xywhr2xyxyr
from mmdet.core import multi_apply
from mmdet.models import HEADS
from ..builder import build_head
from .anchor3d_head import Anchor3DHead


@HEADS.register_module()
class BaseShapeHead(nn.Module):
    """Base Shape-aware Head in Shape Signature Network.

    Note:
        This base shape-aware grouping head uses default settings for small
        objects. For large and huge objects, it is recommended to use
        heavier heads, like (64, 64, 64) and (128, 128, 64, 64, 64) in
        shared conv channels, (2, 1, 1) and (2, 1, 2, 1, 1) in shared
        conv strides. For tiny objects, we can use smaller heads, like
        (32, 32) channels and (1, 1) strides.

    Args:
        num_cls (int): Number of classes.
        num_base_anchors (int): Number of anchors per location.
        box_code_size (int): The dimension of boxes to be encoded.
        in_channels (int): Input channels for convolutional layers.
        shared_conv_channels (tuple): Channels for shared convolutional \
            layers. Default: (64, 64). \
        shared_conv_strides (tuple): Strides for shared convolutional \
            layers. Default: (1, 1).
        use_direction_classifier (bool, optional): Whether to use direction \
            classifier. Default: True.
        conv_cfg (dict): Config of conv layer. Default: dict(type='Conv2d')
        norm_cfg (dict): Config of norm layer. Default: dict(type='BN2d').
        bias (bool|str, optional): Type of bias. Default: False.
    """

    def __init__(self,
                 num_cls,
                 num_base_anchors,
                 box_code_size,
                 in_channels,
                 shared_conv_channels=(64, 64),
                 shared_conv_strides=(1, 1),
                 use_direction_classifier=True,
                 conv_cfg=dict(type='Conv2d'),
                 norm_cfg=dict(type='BN2d'),
                 bias=False):
        super().__init__()
        self.num_cls = num_cls
        self.num_base_anchors = num_base_anchors
        self.use_direction_classifier = use_direction_classifier
        self.box_code_size = box_code_size

        assert len(shared_conv_channels) == len(shared_conv_strides), \
            'Lengths of channels and strides list should be equal.'

        self.shared_conv_channels = [in_channels] + list(shared_conv_channels)
        self.shared_conv_strides = list(shared_conv_strides)

        shared_conv = []
        for i in range(len(self.shared_conv_strides)):
            shared_conv.append(
                ConvModule(
                    self.shared_conv_channels[i],
                    self.shared_conv_channels[i + 1],
                    kernel_size=3,
                    stride=self.shared_conv_strides[i],
                    padding=1,
                    conv_cfg=conv_cfg,
                    bias=bias,
                    norm_cfg=norm_cfg))

        self.shared_conv = nn.Sequential(*shared_conv)

        out_channels = self.shared_conv_channels[-1]
        self.conv_cls = nn.Conv2d(out_channels, num_base_anchors * num_cls, 1)
        self.conv_reg = nn.Conv2d(out_channels,
                                  num_base_anchors * box_code_size, 1)

        if use_direction_classifier:
            self.conv_dir_cls = nn.Conv2d(out_channels, num_base_anchors * 2,
                                          1)

    def init_weights(self):
        """Initialize weights."""
        bias_cls = bias_init_with_prob(0.01)
        # shared conv layers have already been initialized by ConvModule
        normal_init(self.conv_cls, std=0.01, bias=bias_cls)
        normal_init(self.conv_reg, std=0.01)
        if self.use_direction_classifier:
            normal_init(self.conv_dir_cls, std=0.01, bias=bias_cls)

    def forward(self, x):
        """Forward function for SmallHead.

        Args:
            x (torch.Tensor): Input feature map with the shape of
                [B, C, H, W].

        Returns:
            dict[torch.Tensor]: Contain score of each class, bbox \
                regression and direction classification predictions. \
                Note that all the returned tensors are reshaped as \
                [bs*num_base_anchors*H*W, num_cls/box_code_size/dir_bins]. \
                It is more convenient to concat anchors for different \
                classes even though they have different feature map sizes.
        """
        x = self.shared_conv(x)
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        featmap_size = bbox_pred.shape[-2:]
        H, W = featmap_size
        B = bbox_pred.shape[0]
        cls_score = cls_score.view(-1, self.num_base_anchors, self.num_cls, H,
                                   W).permute(0, 1, 3, 4,
                                              2).reshape(B, -1, self.num_cls)
        bbox_pred = bbox_pred.view(-1, self.num_base_anchors,
                                   self.box_code_size, H, W).permute(
                                       0, 1, 3, 4,
                                       2).reshape(B, -1, self.box_code_size)

        dir_cls_preds = None
        if self.use_direction_classifier:
            dir_cls_preds = self.conv_dir_cls(x)
            dir_cls_preds = dir_cls_preds.view(-1, self.num_base_anchors, 2, H,
                                               W).permute(0, 1, 3, 4,
                                                          2).reshape(B, -1, 2)
        ret = dict(
            cls_score=cls_score,
            bbox_pred=bbox_pred,
            dir_cls_preds=dir_cls_preds,
            featmap_size=featmap_size)
        return ret


@HEADS.register_module()
class ShapeAwareHead(Anchor3DHead):
    """Shape-aware grouping head for SSN.

    Args:
        tasks (dict): Shape-aware groups of multi-class objects.
        assign_per_class (bool, optional): Whether to do assignment for each \
            class. Default: True.
        kwargs (dict): Other arguments are the same as those in \
            :class:`Anchor3DHead`.
    """

    def __init__(self, tasks, assign_per_class=True, **kwargs):
        self.tasks = tasks
        self.featmap_sizes = []
        super().__init__(assign_per_class=assign_per_class, **kwargs)

    def _init_layers(self):
        """Initialize neural network layers of the head."""
        self.heads = nn.ModuleList()
        cls_ptr = 0
        for task in self.tasks:
            sizes = self.anchor_generator.sizes[cls_ptr:cls_ptr +
                                                task['num_class']]
            num_size = torch.tensor(sizes).reshape(-1, 3).size(0)
            num_rot = len(self.anchor_generator.rotations)
            num_base_anchors = num_rot * num_size
            branch = dict(
                type='BaseShapeHead',
                num_cls=self.num_classes,
                num_base_anchors=num_base_anchors,
                box_code_size=self.box_code_size,
                in_channels=self.in_channels,
                shared_conv_channels=task['shared_conv_channels'],
                shared_conv_strides=task['shared_conv_strides'])
            self.heads.append(build_head(branch))
            cls_ptr += task['num_class']

    def init_weights(self):
        """Initialize the weights of head."""
        for head in self.heads:
            head.init_weights()

    def forward_single(self, x):
        """Forward function on a single-scale feature map.

        Args:
            x (torch.Tensor): Input features.
        Returns:
            tuple[torch.Tensor]: Contain score of each class, bbox \
                regression and direction classification predictions.
        """
        results = []

        for head in self.heads:
            results.append(head(x))

        cls_score = torch.cat([result['cls_score'] for result in results],
                              dim=1)
        bbox_pred = torch.cat([result['bbox_pred'] for result in results],
                              dim=1)
        dir_cls_preds = None
        if self.use_direction_classifier:
            dir_cls_preds = torch.cat(
                [result['dir_cls_preds'] for result in results], dim=1)

        self.featmap_sizes = []
        for i, task in enumerate(self.tasks):
            for _ in range(task['num_class']):
                self.featmap_sizes.append(results[i]['featmap_size'])
        assert len(self.featmap_sizes) == len(self.anchor_generator.ranges), \
            'Length of feature map sizes must be equal to length of ' + \
            'different ranges of anchor generator.'

        return cls_score, bbox_pred, dir_cls_preds

    def loss_single(self, cls_score, bbox_pred, dir_cls_preds, labels,
                    label_weights, bbox_targets, bbox_weights, dir_targets,
                    dir_weights, num_total_samples):
        """Calculate loss of Single-level results.

        Args:
            cls_score (torch.Tensor): Class score in single-level.
            bbox_pred (torch.Tensor): Bbox prediction in single-level.
            dir_cls_preds (torch.Tensor): Predictions of direction class
                in single-level.
            labels (torch.Tensor): Labels of class.
            label_weights (torch.Tensor): Weights of class loss.
            bbox_targets (torch.Tensor): Targets of bbox predictions.
            bbox_weights (torch.Tensor): Weights of bbox loss.
            dir_targets (torch.Tensor): Targets of direction predictions.
            dir_weights (torch.Tensor): Weights of direction loss.
            num_total_samples (int): The number of valid samples.

        Returns:
            tuple[torch.Tensor]: Losses of class, bbox \
                and direction, respectively.
        """
        # classification loss
        if num_total_samples is None:
            num_total_samples = int(cls_score.shape[0])
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.reshape(-1, self.num_classes)
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=num_total_samples)

        # regression loss
        bbox_targets = bbox_targets.reshape(-1, self.box_code_size)
        bbox_weights = bbox_weights.reshape(-1, self.box_code_size)
        code_weight = self.train_cfg.get('code_weight', None)

        if code_weight:
            bbox_weights = bbox_weights * bbox_weights.new_tensor(code_weight)
        bbox_pred = bbox_pred.reshape(-1, self.box_code_size)
        if self.diff_rad_by_sin:
            bbox_pred, bbox_targets = self.add_sin_difference(
                bbox_pred, bbox_targets)
        loss_bbox = self.loss_bbox(
            bbox_pred,
            bbox_targets,
            bbox_weights,
            avg_factor=num_total_samples)

        # direction classification loss
        loss_dir = None
        if self.use_direction_classifier:
            dir_cls_preds = dir_cls_preds.reshape(-1, 2)
            dir_targets = dir_targets.reshape(-1)
            dir_weights = dir_weights.reshape(-1)
            loss_dir = self.loss_dir(
                dir_cls_preds,
                dir_targets,
                dir_weights,
                avg_factor=num_total_samples)

        return loss_cls, loss_bbox, loss_dir

    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
        """Calculate losses.

        Args:
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
                class predictions.
            gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Gt bboxes
                of each sample.
            gt_labels (list[torch.Tensor]): Gt labels of each sample.
            input_metas (list[dict]): Contain pcd and img's meta info.
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.

        Returns:
            dict[str, list[torch.Tensor]]: Classification, bbox, and \
                direction losses of each level.

                - loss_cls (list[torch.Tensor]): Classification losses.
                - loss_bbox (list[torch.Tensor]): Box regression losses.
                - loss_dir (list[torch.Tensor]): Direction classification \
                    losses.
        """
        device = cls_scores[0].device
        anchor_list = self.get_anchors(
            self.featmap_sizes, input_metas, device=device)
        cls_reg_targets = self.anchor_target_3d(
            anchor_list,
            gt_bboxes,
            input_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            num_classes=self.num_classes,
            sampling=self.sampling)

        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         dir_targets_list, dir_weights_list, num_total_pos,
         num_total_neg) = cls_reg_targets
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)

        # num_total_samples = None
        losses_cls, losses_bbox, losses_dir = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            dir_cls_preds,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            dir_targets_list,
            dir_weights_list,
            num_total_samples=num_total_samples)
        return dict(
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dir=losses_dir)

    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   dir_cls_preds,
                   input_metas,
                   cfg=None,
                   rescale=False):
        """Get bboxes of anchor head.

        Args:
            cls_scores (list[torch.Tensor]): Multi-level class scores.
            bbox_preds (list[torch.Tensor]): Multi-level bbox predictions.
            dir_cls_preds (list[torch.Tensor]): Multi-level direction
                class predictions.
            input_metas (list[dict]): Contain pcd and img's meta info.
            cfg (None | :obj:`ConfigDict`): Training or testing config.
                Default: None.
            rescale (list[torch.Tensor], optional): Whether to rescale bbox.
                Default: False.

        Returns:
            list[tuple]: Prediction resultes of batches.
        """
        assert len(cls_scores) == len(bbox_preds)
        assert len(cls_scores) == len(dir_cls_preds)
        num_levels = len(cls_scores)
        assert num_levels == 1, 'Only support single level inference.'
        device = cls_scores[0].device
        mlvl_anchors = self.anchor_generator.grid_anchors(
            self.featmap_sizes, device=device)
        # `anchor` is a list of anchors for different classes
        mlvl_anchors = [torch.cat(anchor, dim=0) for anchor in mlvl_anchors]

        result_list = []
        for img_id in range(len(input_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            dir_cls_pred_list = [
                dir_cls_preds[i][img_id].detach() for i in range(num_levels)
            ]

            input_meta = input_metas[img_id]
            proposals = self.get_bboxes_single(cls_score_list, bbox_pred_list,
                                               dir_cls_pred_list, mlvl_anchors,
                                               input_meta, cfg, rescale)
            result_list.append(proposals)
        return result_list

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
                          cfg=None,
                          rescale=False):
        """Get bboxes of single branch.

        Args:
            cls_scores (torch.Tensor): Class score in single batch.
            bbox_preds (torch.Tensor): Bbox prediction in single batch.
            dir_cls_preds (torch.Tensor): Predictions of direction class
                in single batch.
            mlvl_anchors (List[torch.Tensor]): Multi-level anchors
                in single batch.
            input_meta (list[dict]): Contain pcd and img's meta info.
            cfg (None | :obj:`ConfigDict`): Training or testing config.
            rescale (list[torch.Tensor], optional): whether to rescale bbox. \
                Default: False.

        Returns:
            tuple: Contain predictions of single batch.

                - bboxes (:obj:`BaseInstance3DBoxes`): Predicted 3d bboxes.
                - scores (torch.Tensor): Class score of each bbox.
                - labels (torch.Tensor): Label of each bbox.
        """
        cfg = self.test_cfg if cfg is None else cfg
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2] == bbox_pred.size()[-2]
            assert cls_score.size()[-2] == dir_cls_pred.size()[-2]
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]

            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)

            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_score = dir_cls_score[topk_inds]

            bboxes = self.bbox_coder.decode(anchors, bbox_pred)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_dir_scores.append(dir_cls_score)

        mlvl_bboxes = torch.cat(mlvl_bboxes)
        mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d'](
            mlvl_bboxes, box_dim=self.box_code_size).bev)
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

        if self.use_sigmoid_cls:
            # Add a dummy background class to the front when using sigmoid
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        score_thr = cfg.get('score_thr', 0)
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_scores, score_thr, cfg.max_num,
                                       cfg, mlvl_dir_scores)
        bboxes, scores, labels, dir_scores = results
        if bboxes.shape[0] > 0:
            dir_rot = limit_period(bboxes[..., 6] - self.dir_offset,
                                   self.dir_limit_offset, np.pi)
            bboxes[..., 6] = (
                dir_rot + self.dir_offset +
                np.pi * dir_scores.to(bboxes.dtype))
        bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size)
        return bboxes, scores, labels