sunrgbd-3d-10class.py 2.67 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
8
9
10
11
12
dataset_type = 'SUNRGBDDataset'
data_root = 'data/sunrgbd/'
class_names = ('bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
               'night_stand', 'bookshelf', 'bathtub')
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(type='LoadAnnotations3D'),
    dict(
wuyuefeng's avatar
wuyuefeng committed
13
14
15
16
17
18
19
20
21
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
    ),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.523599, 0.523599],
        scale_ratio_range=[0.85, 1.15],
        shift_height=True),
liyinhao's avatar
liyinhao committed
22
23
24
25
26
27
28
29
30
31
    dict(type='IndoorPointSample', num_points=20000),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
zhangwenwei's avatar
zhangwenwei committed
32
33
34
35
36
37
38
39
40
41
42
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
wuyuefeng's avatar
wuyuefeng committed
43
44
45
46
47
            dict(
                type='RandomFlip3D',
                sync_2d=False,
                flip_ratio_bev_horizontal=0.5,
            ),
zhangwenwei's avatar
zhangwenwei committed
48
49
50
51
52
53
54
            dict(type='IndoorPointSample', num_points=20000),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
liyinhao's avatar
liyinhao committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
]

data = dict(
    samples_per_gpu=16,
    workers_per_gpu=4,
    train=dict(
        type='RepeatDataset',
        times=5,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file=data_root + 'sunrgbd_infos_train.pkl',
            pipeline=train_pipeline,
            classes=class_names,
wuyuefeng's avatar
Demo  
wuyuefeng committed
69
70
71
72
            filter_empty_gt=False,
            # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
            # and box_type_3d='Depth' in sunrgbd and scannet dataset.
            box_type_3d='Depth')),
liyinhao's avatar
liyinhao committed
73
74
75
76
77
78
    val=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'sunrgbd_infos_val.pkl',
        pipeline=test_pipeline,
        classes=class_names,
wuyuefeng's avatar
Demo  
wuyuefeng committed
79
80
        test_mode=True,
        box_type_3d='Depth'),
liyinhao's avatar
liyinhao committed
81
82
83
84
85
86
    test=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'sunrgbd_infos_val.pkl',
        pipeline=test_pipeline,
        classes=class_names,
wuyuefeng's avatar
Demo  
wuyuefeng committed
87
88
        test_mode=True,
        box_type_3d='Depth'))