range_image_head.py 5.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple

import torch
from torch import Tensor, nn

from mmdet3d.models import Base3DDecodeHead
from mmdet3d.registry import MODELS
from mmdet3d.structures.det3d_data_sample import SampleList
from mmdet3d.utils import ConfigType, OptConfigType


@MODELS.register_module()
class RangeImageHead(Base3DDecodeHead):
    """RangeImage decoder head.

    Args:
        loss_ce (dict or :obj:`ConfigDict`): Config of CrossEntropy loss.
            Defaults to dict(
                     type='mmdet.CrossEntropyLoss',
                     use_sigmoid=False,
                     class_weight=None,
                     loss_weight=1.0).
        loss_lovasz (dict or :obj:`ConfigDict`, optional): Config of Lovasz
            loss. Defaults to None.
        lpss_boundary (dict or :obj:`ConfigDict`, optional): Config of boundary
            loss. Defaults to None.
        indices (int): The indice of features to use. Defaults to 0.
    """

    def __init__(self,
                 loss_ce: ConfigType = dict(
                     type='mmdet.CrossEntropyLoss',
                     use_sigmoid=False,
                     class_weight=None,
                     loss_weight=1.0),
                 loss_lovasz: OptConfigType = None,
                 loss_boundary: OptConfigType = None,
                 indices: int = 0,
                 **kwargs) -> None:
        super(RangeImageHead, self).__init__(**kwargs)

        self.loss_ce = MODELS.build(loss_ce)
        if loss_lovasz is not None:
            self.loss_lovasz = MODELS.build(loss_lovasz)
        else:
            self.loss_lovasz = None
        if loss_boundary is not None:
            self.loss_boundary = MODELS.build(loss_boundary)
        else:
            self.loss_boundary = None

        self.indices = indices

    def build_conv_seg(self, channels: int, num_classes: int,
                       kernel_size: int) -> nn.Module:
        return nn.Conv2d(channels, num_classes, kernel_size=kernel_size)

    def forward(self, feats: Tuple[Tensor]) -> Tensor:
        """Forward function."""
        seg_logit = self.cls_seg(feats[self.indices])
        return seg_logit

    def _stack_batch_gt(self, batch_data_samples: SampleList) -> Tensor:
        gt_semantic_segs = [
            data_sample.gt_pts_seg.semantic_seg
            for data_sample in batch_data_samples
        ]
        return torch.stack(gt_semantic_segs, dim=0)

    def loss_by_feat(self, seg_logit: Tensor,
                     batch_data_samples: SampleList) -> dict:
        """Compute semantic segmentation loss.

        Args:
            seg_logit (Tensor): Predicted  logits.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The seg
                data samples. It usually includes information such
                as `metainfo` and `gt_pts_seg`.

        Returns:
            Dict[str, Tensor]: A dictionary of loss components.
        """
        seg_label = self._stack_batch_gt(batch_data_samples)
        seg_label = seg_label.squeeze(dim=1)
        loss = dict()
        loss['loss_ce'] = self.loss_ce(
            seg_logit, seg_label, ignore_index=self.ignore_index)
        if self.loss_lovasz:
            loss['loss_lovasz'] = self.loss_lovasz(
                seg_logit, seg_label, ignore_index=self.ignore_index)
        if self.loss_boundary:
            loss['loss_boundary'] = self.loss_boundary(seg_logit, seg_label)
        return loss

    def predict(self, inputs: Tuple[Tensor], batch_input_metas: List[dict],
                test_cfg: ConfigType) -> torch.Tensor:
        """Forward function for testing.

        Args:
            inputs (Tuple[Tensor]): Features from backbone.
            batch_input_metas (List[:obj:`Det3DDataSample`]): The det3d data
                samples. It usually includes information such as `metainfo` and
                `gt_pts_seg`. We use `point2voxel_map` in this function.
            test_cfg (dict or :obj:`ConfigDict`): The testing config.

        Returns:
            List[Tensor]: List of point-wise segmentation labels.
        """
        seg_logits = self.forward(inputs)
        seg_labels = seg_logits.argmax(dim=1)
        device = seg_logits.device
        use_knn = test_cfg.get('use_knn', False)
        if use_knn:
            from .utils import KNN
            post_module = KNN(
                test_cfg=test_cfg,
                num_classes=self.num_classes,
                ignore_index=self.ignore_index)

        seg_label_list = []
        for i in range(len(batch_input_metas)):
            input_metas = batch_input_metas[i]
            proj_x = torch.tensor(
                input_metas['proj_x'], dtype=torch.int64, device=device)
            proj_y = torch.tensor(
                input_metas['proj_y'], dtype=torch.int64, device=device)
            proj_range = torch.tensor(
                input_metas['proj_range'], dtype=torch.float32, device=device)
            unproj_range = torch.tensor(
                input_metas['unproj_range'],
                dtype=torch.float32,
                device=device)

            if use_knn:
                seg_label_list.append(
                    post_module(proj_range, unproj_range, seg_labels[i],
                                proj_x, proj_y))
            else:
                seg_label_list.append(seg_labels[i, proj_y, proj_x])

        return seg_label_list