centerformer.py 7.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional

import torch
from torch import Tensor
from torch.nn.modules.batchnorm import _BatchNorm

from mmdet3d.models.detectors import Base3DDetector
from mmdet3d.registry import MODELS
from mmdet3d.structures import Det3DDataSample


@MODELS.register_module()
class CenterFormer(Base3DDetector):
    """Base class of center-based 3D detector.

    Args:
        voxel_encoder (dict, optional): Point voxelization
            encoder layer. Defaults to None.
        middle_encoder (dict, optional): Middle encoder layer
            of points cloud modality. Defaults to None.
        pts_fusion_layer (dict, optional): Fusion layer.
            Defaults to None.
        backbone (dict, optional): Backbone of extracting
            points features. Defaults to None.
        neck (dict, optional): Neck of extracting
            points features. Defaults to None.
        bbox_head (dict, optional): Bboxes head of
            point cloud modality. Defaults to None.
        train_cfg (dict, optional): Train config of model.
            Defaults to None.
        test_cfg (dict, optional): Train config of model.
            Defaults to None.
        init_cfg (dict, optional): Initialize config of
            model. Defaults to None.
        data_preprocessor (dict or ConfigDict, optional): The pre-process
            config of :class:`Det3DDataPreprocessor`. Defaults to None.
    """

    def __init__(self,
                 voxel_encoder: Optional[dict] = None,
                 middle_encoder: Optional[dict] = None,
                 backbone: Optional[dict] = None,
                 neck: Optional[dict] = None,
                 bbox_head: Optional[dict] = None,
                 train_cfg: Optional[dict] = None,
                 test_cfg: Optional[dict] = None,
                 init_cfg: Optional[dict] = None,
                 data_preprocessor: Optional[dict] = None,
                 **kwargs):
        super(CenterFormer, self).__init__(
            init_cfg=init_cfg, data_preprocessor=data_preprocessor, **kwargs)

        if voxel_encoder:
            self.voxel_encoder = MODELS.build(voxel_encoder)
        if middle_encoder:
            self.middle_encoder = MODELS.build(middle_encoder)
        if backbone:
            backbone.update(train_cfg=train_cfg, test_cfg=test_cfg)
            self.backbone = MODELS.build(backbone)
        if neck is not None:
            self.neck = MODELS.build(neck)
        if bbox_head:
            bbox_head.update(train_cfg=train_cfg, test_cfg=test_cfg)
            self.bbox_head = MODELS.build(bbox_head)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, _BatchNorm):
                torch.nn.init.uniform_(m.weight)

    @property
    def with_bbox(self):
        """bool: Whether the detector has a 3D box head."""
        return hasattr(self, 'bbox_head') and self.bbox_head is not None

    @property
    def with_backbone(self):
        """bool: Whether the detector has a 3D backbone."""
        return hasattr(self, 'backbone') and self.backbone is not None

    @property
    def with_voxel_encoder(self):
        """bool: Whether the detector has a voxel encoder."""
        return hasattr(self,
                       'voxel_encoder') and self.voxel_encoder is not None

    @property
    def with_middle_encoder(self):
        """bool: Whether the detector has a middle encoder."""
        return hasattr(self,
                       'middle_encoder') and self.middle_encoder is not None

    def _forward(self):
        pass

    def extract_feat(self, batch_inputs_dict: dict,
                     batch_input_metas: List[dict]) -> tuple:
        """Extract features from images and points.
        Args:
            batch_inputs_dict (dict): Dict of batch inputs. It
                contains
                - points (List[tensor]):  Point cloud of multiple inputs.
                - imgs (tensor): Image tensor with shape (B, C, H, W).
            batch_input_metas (list[dict]): Meta information of multiple inputs
                in a batch.
        Returns:
             tuple: Two elements in tuple arrange as
             image features and point cloud features.
        """
        voxel_dict = batch_inputs_dict.get('voxels', None)
        voxel_features, feature_coors = self.voxel_encoder(
            voxel_dict['voxels'], voxel_dict['coors'])
        batch_size = voxel_dict['coors'][-1, 0].item() + 1
        x = self.middle_encoder(voxel_features, feature_coors, batch_size)

        return x

    def loss(self, batch_inputs_dict: Dict[List, torch.Tensor],
             batch_data_samples: List[Det3DDataSample],
             **kwargs) -> List[Det3DDataSample]:
        """
        Args:
            batch_inputs_dict (dict): The model input dict which include
                'points' and `imgs` keys.
                - points (list[torch.Tensor]): Point cloud of each sample.
                - imgs (torch.Tensor): Tensor of batch images, has shape
                  (B, C, H ,W)
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`, .
        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """

        batch_input_metas = [item.metainfo for item in batch_data_samples]
        pts_feats = self.extract_feat(batch_inputs_dict, batch_input_metas)
        preds, batch_tatgets = self.backbone(pts_feats, batch_data_samples)
        preds = self.bbox_head(preds)
        losses = dict()
        losses.update(self.bbox_head.loss(preds, batch_tatgets))
        return losses
        # return self.bbox_head.predict(preds, batch_tatgets)

    def predict(self, batch_inputs_dict: Dict[str, Optional[Tensor]],
                batch_data_samples: List[Det3DDataSample],
                **kwargs) -> List[Det3DDataSample]:
        """Forward of testing.
        Args:
            batch_inputs_dict (dict): The model input dict which include
                'points' keys.
                - points (list[torch.Tensor]): Point cloud of each sample.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`.
        Returns:
            list[:obj:`Det3DDataSample`]: Detection results of the
            input sample. Each Det3DDataSample usually contain
            'pred_instances_3d'. And the ``pred_instances_3d`` usually
            contains following keys.
            - scores_3d (Tensor): Classification scores, has a shape
                (num_instances, )
            - labels_3d (Tensor): Labels of bboxes, has a shape
                (num_instances, ).
            - bbox_3d (:obj:`BaseInstance3DBoxes`): Prediction of bboxes,
                contains a tensor with shape (num_instances, 7).
        """
        batch_input_metas = [item.metainfo for item in batch_data_samples]
        pts_feats = self.extract_feat(batch_inputs_dict, batch_input_metas)
        preds, _ = self.backbone(pts_feats, batch_data_samples)

        preds = self.bbox_head(preds)
        results_list_3d = self.bbox_head.predict(preds, batch_input_metas)

        detsamples = self.add_pred_to_datasample(batch_data_samples,
                                                 results_list_3d)
        return detsamples