det3d_data_sample.py 8.86 KB
Newer Older
VVsssssk's avatar
VVsssssk committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangshilong's avatar
zhangshilong committed
2
3
4
from typing import Dict, List, Optional, Tuple, Union

import torch
5
from mmdet.structures import DetDataSample
6
from mmengine.structures import InstanceData
VVsssssk's avatar
VVsssssk committed
7

ZCMax's avatar
ZCMax committed
8
from .point_data import PointData
VVsssssk's avatar
VVsssssk committed
9

VVsssssk's avatar
VVsssssk committed
10
11

class Det3DDataSample(DetDataSample):
VVsssssk's avatar
VVsssssk committed
12
13
14
15
16
    """A data structure interface of MMDetection3D. They are used as interfaces
    between different components.

    The attributes in ``Det3DDataSample`` are divided into several parts:

17
18
19
20
21
22
23
24
25
26
27
28
29
30
        - ``proposals`` (InstanceData): Region proposals used in two-stage
          detectors.
        - ``ignored_instances`` (InstanceData): Instances to be ignored during
          training/testing.
        - ``gt_instances_3d`` (InstanceData): Ground truth of 3D instance
          annotations.
        - ``gt_instances`` (InstanceData): Ground truth of 2D instance
          annotations.
        - ``pred_instances_3d`` (InstanceData): 3D instances of model
          predictions.
          - For point-cloud 3D object detection task whose input modality is
            `use_lidar=True, use_camera=False`, the 3D predictions results are
            saved in `pred_instances_3d`.
          - For vision-only (monocular/multi-view) 3D object detection task
VVsssssk's avatar
VVsssssk committed
31
32
            whose input modality is `use_lidar=False, use_camera=True`, the 3D
            predictions are saved in `pred_instances_3d`.
33
34
35
36
37
38
39
        - ``pred_instances`` (InstanceData): 2D instances of model predictions.
          - For multi-modality 3D detection task whose input modality is
            `use_lidar=True, use_camera=True`, the 2D predictions are saved in
            `pred_instances`.
        - ``pts_pred_instances_3d`` (InstanceData): 3D instances of model
          predictions based on point cloud.
          - For multi-modality 3D detection task whose input modality is
VVsssssk's avatar
VVsssssk committed
40
41
42
            `use_lidar=True, use_camera=True`, the 3D predictions based on
            point cloud are saved in `pts_pred_instances_3d` to distinguish
            with `img_pred_instances_3d` which based on image.
43
44
45
        - ``img_pred_instances_3d`` (InstanceData): 3D instances of model
          predictions based on image.
          - For multi-modality 3D detection task whose input modality is
VVsssssk's avatar
VVsssssk committed
46
47
48
            `use_lidar=True, use_camera=True`, the 3D predictions based on
            image are saved in `img_pred_instances_3d` to distinguish with
            `pts_pred_instances_3d` which based on point cloud.
49
50
51
52
        - ``gt_pts_seg`` (PointData): Ground truth of point cloud segmentation.
        - ``pred_pts_seg`` (PointData): Prediction of point cloud segmentation.
        - ``eval_ann_info`` (dict or None): Raw annotation, which will be
          passed to evaluator and do the online evaluation.
VVsssssk's avatar
VVsssssk committed
53
54

    Examples:
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        >>> import torch
        >>> from mmengine.structures import InstanceData

        >>> from mmdet3d.structures import Det3DDataSample
        >>> from mmdet3d.structures import BaseInstance3DBoxes

        >>> data_sample = Det3DDataSample()
        >>> meta_info = dict(
        ...     img_shape=(800, 1196, 3),
        ...     pad_shape=(800, 1216, 3))
        >>> gt_instances_3d = InstanceData(metainfo=meta_info)
        >>> gt_instances_3d.bboxes_3d = BaseInstance3DBoxes(torch.rand((5, 7)))
        >>> gt_instances_3d.labels_3d = torch.randint(0, 3, (5,))
        >>> data_sample.gt_instances_3d = gt_instances_3d
        >>> assert 'img_shape' in data_sample.gt_instances_3d.metainfo_keys()
        >>> len(data_sample.gt_instances_3d)
        5
        >>> print(data_sample)
        <Det3DDataSample(
VVsssssk's avatar
VVsssssk committed
74
75
            META INFORMATION
            DATA FIELDS
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
            gt_instances_3d: <InstanceData(
                    META INFORMATION
                    img_shape: (800, 1196, 3)
                    pad_shape: (800, 1216, 3)
                    DATA FIELDS
                    labels_3d: tensor([1, 0, 2, 0, 1])
                    bboxes_3d: BaseInstance3DBoxes(
                            tensor([[1.9115e-01, 3.6061e-01, 6.7707e-01, 5.2902e-01, 8.0736e-01, 8.2759e-01,  # noqa E501
                                2.4328e-01],
                                [5.6272e-01, 2.7508e-01, 5.7966e-01, 9.2410e-01, 3.0456e-01, 1.8912e-01,  # noqa E501
                                3.3176e-01],
                                [8.1069e-01, 2.8684e-01, 7.7689e-01, 9.2397e-02, 5.5849e-01, 3.8007e-01,  # noqa E501
                                4.6719e-01],
                                [6.6346e-01, 4.8005e-01, 5.2318e-02, 4.4137e-01, 4.1163e-01, 8.9339e-01,  # noqa E501
                                7.2847e-01],
                                [2.4800e-01, 7.1944e-01, 3.4766e-01, 7.8583e-01, 8.5507e-01, 6.3729e-02,  # noqa E501
                                7.5161e-05]]))
                ) at 0x7f7e29de3a00>
        ) at 0x7f7e2a0e8640>
        >>> pred_instances = InstanceData(metainfo=meta_info)
        >>> pred_instances.bboxes = torch.rand((5, 4))
        >>> pred_instances.scores = torch.rand((5, ))
        >>> data_sample = Det3DDataSample(pred_instances=pred_instances)
        >>> assert 'pred_instances' in data_sample

        >>> pred_instances_3d = InstanceData(metainfo=meta_info)
        >>> pred_instances_3d.bboxes_3d = BaseInstance3DBoxes(
        ...     torch.rand((5, 7)))
        >>> pred_instances_3d.scores_3d = torch.rand((5, ))
        >>> pred_instances_3d.labels_3d = torch.rand((5, ))
        >>> data_sample = Det3DDataSample(pred_instances_3d=pred_instances_3d)
        >>> assert 'pred_instances_3d' in data_sample

        >>> data_sample = Det3DDataSample()
        >>> gt_instances_3d_data = dict(
        ...    bboxes_3d=BaseInstance3DBoxes(torch.rand((2, 7))),
        ...    labels_3d=torch.rand(2))
        >>> gt_instances_3d = InstanceData(**gt_instances_3d_data)
        >>> data_sample.gt_instances_3d = gt_instances_3d
        >>> assert 'gt_instances_3d' in data_sample
        >>> assert 'bboxes_3d' in data_sample.gt_instances_3d

        >>> from mmdet3d.structures import PointData
        >>> data_sample = Det3DDataSample()
        >>> gt_pts_seg_data = dict(
        ...    pts_instance_mask=torch.rand(2),
        ...    pts_semantic_mask=torch.rand(2))
        >>> data_sample.gt_pts_seg = PointData(**gt_pts_seg_data)
        >>> print(data_sample)
        <Det3DDataSample(
VVsssssk's avatar
VVsssssk committed
126
127
            META INFORMATION
            DATA FIELDS
128
129
130
131
132
133
134
            gt_pts_seg: <PointData(
                    META INFORMATION
                    DATA FIELDS
                    pts_semantic_mask: tensor([0.7199, 0.4006])
                    pts_instance_mask: tensor([0.7363, 0.8096])
                ) at 0x7f7e2962cc40>
        ) at 0x7f7e29ff0d60>
VVsssssk's avatar
VVsssssk committed
135
136
137
138
139
140
141
    """

    @property
    def gt_instances_3d(self) -> InstanceData:
        return self._gt_instances_3d

    @gt_instances_3d.setter
142
    def gt_instances_3d(self, value: InstanceData) -> None:
VVsssssk's avatar
VVsssssk committed
143
144
145
        self.set_field(value, '_gt_instances_3d', dtype=InstanceData)

    @gt_instances_3d.deleter
146
    def gt_instances_3d(self) -> None:
VVsssssk's avatar
VVsssssk committed
147
148
149
150
151
152
153
        del self._gt_instances_3d

    @property
    def pred_instances_3d(self) -> InstanceData:
        return self._pred_instances_3d

    @pred_instances_3d.setter
154
    def pred_instances_3d(self, value: InstanceData) -> None:
VVsssssk's avatar
VVsssssk committed
155
156
157
        self.set_field(value, '_pred_instances_3d', dtype=InstanceData)

    @pred_instances_3d.deleter
158
    def pred_instances_3d(self) -> None:
VVsssssk's avatar
VVsssssk committed
159
160
        del self._pred_instances_3d

VVsssssk's avatar
VVsssssk committed
161
162
163
164
165
    @property
    def pts_pred_instances_3d(self) -> InstanceData:
        return self._pts_pred_instances_3d

    @pts_pred_instances_3d.setter
166
    def pts_pred_instances_3d(self, value: InstanceData) -> None:
VVsssssk's avatar
VVsssssk committed
167
168
169
        self.set_field(value, '_pts_pred_instances_3d', dtype=InstanceData)

    @pts_pred_instances_3d.deleter
170
    def pts_pred_instances_3d(self) -> None:
VVsssssk's avatar
VVsssssk committed
171
172
173
174
175
176
177
        del self._pts_pred_instances_3d

    @property
    def img_pred_instances_3d(self) -> InstanceData:
        return self._img_pred_instances_3d

    @img_pred_instances_3d.setter
178
    def img_pred_instances_3d(self, value: InstanceData) -> None:
VVsssssk's avatar
VVsssssk committed
179
180
181
        self.set_field(value, '_img_pred_instances_3d', dtype=InstanceData)

    @img_pred_instances_3d.deleter
182
    def img_pred_instances_3d(self) -> None:
VVsssssk's avatar
VVsssssk committed
183
184
        del self._img_pred_instances_3d

VVsssssk's avatar
VVsssssk committed
185
    @property
ZCMax's avatar
ZCMax committed
186
187
    def gt_pts_seg(self) -> PointData:
        return self._gt_pts_seg
VVsssssk's avatar
VVsssssk committed
188

ZCMax's avatar
ZCMax committed
189
    @gt_pts_seg.setter
190
    def gt_pts_seg(self, value: PointData) -> None:
ZCMax's avatar
ZCMax committed
191
        self.set_field(value, '_gt_pts_seg', dtype=PointData)
VVsssssk's avatar
VVsssssk committed
192

ZCMax's avatar
ZCMax committed
193
    @gt_pts_seg.deleter
194
    def gt_pts_seg(self) -> None:
ZCMax's avatar
ZCMax committed
195
        del self._gt_pts_seg
VVsssssk's avatar
VVsssssk committed
196
197

    @property
ZCMax's avatar
ZCMax committed
198
199
    def pred_pts_seg(self) -> PointData:
        return self._pred_pts_seg
VVsssssk's avatar
VVsssssk committed
200

ZCMax's avatar
ZCMax committed
201
    @pred_pts_seg.setter
202
    def pred_pts_seg(self, value: PointData) -> None:
ZCMax's avatar
ZCMax committed
203
        self.set_field(value, '_pred_pts_seg', dtype=PointData)
VVsssssk's avatar
VVsssssk committed
204

ZCMax's avatar
ZCMax committed
205
    @pred_pts_seg.deleter
206
    def pred_pts_seg(self) -> None:
ZCMax's avatar
ZCMax committed
207
        del self._pred_pts_seg
zhangshilong's avatar
zhangshilong committed
208
209
210
211
212
213


SampleList = List[Det3DDataSample]
OptSampleList = Optional[SampleList]
ForwardResults = Union[Dict[str, torch.Tensor], List[Det3DDataSample],
                       Tuple[torch.Tensor], torch.Tensor]