test_config.py 10.3 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
from os.path import dirname, exists, join, relpath


def _get_config_directory():
zhangwenwei's avatar
zhangwenwei committed
5
    """Find the predefined detector config directory."""
zhangwenwei's avatar
zhangwenwei committed
6
    try:
7
8
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(__file__)))
zhangwenwei's avatar
zhangwenwei committed
9
10
    except NameError:
        # For IPython development when this __file__ is not defined
11
12
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
zhangwenwei's avatar
zhangwenwei committed
13
14
15
16
17
18
19
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def test_config_build_detector():
zhangwenwei's avatar
zhangwenwei committed
20
21
    """Test that all detection models defined in the configs can be
    initialized."""
zhangwenwei's avatar
zhangwenwei committed
22
    from mmcv import Config
zhangwenwei's avatar
zhangwenwei committed
23

zhangwenwei's avatar
zhangwenwei committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
    from mmdet3d.models import build_detector

    config_dpath = _get_config_directory()
    print('Found config_dpath = {!r}'.format(config_dpath))

    import glob
    config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py')))
    config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
    config_names = [relpath(p, config_dpath) for p in config_fpaths]

    print('Using {} config files'.format(len(config_names)))

    for config_fname in config_names:
        config_fpath = join(config_dpath, config_fname)
        config_mod = Config.fromfile(config_fpath)

        config_mod.model
41
42
        config_mod.model.train_cfg
        config_mod.model.test_cfg
zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
47
48
        print('Building detector, config_fpath = {!r}'.format(config_fpath))

        # Remove pretrained keys to allow for testing in an offline environment
        if 'pretrained' in config_mod.model:
            config_mod.model['pretrained'] = None

49
        detector = build_detector(config_mod.model)
zhangwenwei's avatar
zhangwenwei committed
50
51
52
53
54
55
56
57
58
        assert detector is not None

        if 'roi_head' in config_mod.model.keys():
            # for two stage detector
            # detectors must have bbox head
            assert detector.roi_head.with_bbox and detector.with_bbox
            assert detector.roi_head.with_mask == detector.with_mask

            head_config = config_mod.model['roi_head']
wuyuefeng's avatar
wuyuefeng committed
59
60
            if head_config.type == 'PartAggregationROIHead':
                check_parta2_roi_head(head_config, detector.roi_head)
61
62
            elif head_config.type == 'H3DRoIHead':
                check_h3d_roi_head(head_config, detector.roi_head)
wuyuefeng's avatar
wuyuefeng committed
63
64
            else:
                _check_roi_head(head_config, detector.roi_head)
zhangwenwei's avatar
zhangwenwei committed
65
66
67
68
69
70
71
72
        # else:
        #     # for single stage detector
        #     # detectors must have bbox head
        #     # assert detector.with_bbox
        #     head_config = config_mod.model['bbox_head']
        #     _check_bbox_head(head_config, detector.bbox_head)


73
def test_config_build_pipeline():
zhangwenwei's avatar
zhangwenwei committed
74
75
    """Test that all detection models defined in the configs can be
    initialized."""
76
    from mmcv import Config
zhangwenwei's avatar
zhangwenwei committed
77

78
79
80
81
82
    from mmdet3d.datasets.pipelines import Compose

    config_dpath = _get_config_directory()
    print('Found config_dpath = {!r}'.format(config_dpath))

83
84
    # Other configs needs database sampler.
    config_names = [
zhangwenwei's avatar
zhangwenwei committed
85
        'pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py',
86
    ]
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    print('Using {} config files'.format(len(config_names)))

    for config_fname in config_names:
        config_fpath = join(config_dpath, config_fname)
        config_mod = Config.fromfile(config_fpath)

        # build train_pipeline
        train_pipeline = Compose(config_mod.train_pipeline)
        test_pipeline = Compose(config_mod.test_pipeline)
        assert train_pipeline is not None
        assert test_pipeline is not None


zhangwenwei's avatar
zhangwenwei committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
def _check_roi_head(config, head):
    # check consistency between head_config and roi_head
    assert config['type'] == head.__class__.__name__

    # check roi_align
    bbox_roi_cfg = config.bbox_roi_extractor
    bbox_roi_extractor = head.bbox_roi_extractor
    _check_roi_extractor(bbox_roi_cfg, bbox_roi_extractor)

    # check bbox head infos
    bbox_cfg = config.bbox_head
    bbox_head = head.bbox_head
    _check_bbox_head(bbox_cfg, bbox_head)

    if head.with_mask:
        # check roi_align
        if config.mask_roi_extractor:
            mask_roi_cfg = config.mask_roi_extractor
            mask_roi_extractor = head.mask_roi_extractor
            _check_roi_extractor(mask_roi_cfg, mask_roi_extractor,
                                 bbox_roi_extractor)

        # check mask head infos
        mask_head = head.mask_head
        mask_cfg = config.mask_head
        _check_mask_head(mask_cfg, mask_head)


def _check_roi_extractor(config, roi_extractor, prev_roi_extractor=None):
zhangwenwei's avatar
zhangwenwei committed
130
    from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
131
132
133
134
135
136
137
138
    if isinstance(roi_extractor, nn.ModuleList):
        if prev_roi_extractor:
            prev_roi_extractor = prev_roi_extractor[0]
        roi_extractor = roi_extractor[0]

    assert (len(config.featmap_strides) == len(roi_extractor.roi_layers))
    assert (config.out_channels == roi_extractor.out_channels)
    from torch.nn.modules.utils import _pair
139
140
    assert (_pair(config.roi_layer.output_size) ==
            roi_extractor.roi_layers[0].output_size)
zhangwenwei's avatar
zhangwenwei committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    if 'use_torchvision' in config.roi_layer:
        assert (config.roi_layer.use_torchvision ==
                roi_extractor.roi_layers[0].use_torchvision)
    elif 'aligned' in config.roi_layer:
        assert (
            config.roi_layer.aligned == roi_extractor.roi_layers[0].aligned)

    if prev_roi_extractor:
        assert (roi_extractor.roi_layers[0].aligned ==
                prev_roi_extractor.roi_layers[0].aligned)
        assert (roi_extractor.roi_layers[0].use_torchvision ==
                prev_roi_extractor.roi_layers[0].use_torchvision)


def _check_mask_head(mask_cfg, mask_head):
zhangwenwei's avatar
zhangwenwei committed
157
    from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    if isinstance(mask_cfg, list):
        for single_mask_cfg, single_mask_head in zip(mask_cfg, mask_head):
            _check_mask_head(single_mask_cfg, single_mask_head)
    elif isinstance(mask_head, nn.ModuleList):
        for single_mask_head in mask_head:
            _check_mask_head(mask_cfg, single_mask_head)
    else:
        assert mask_cfg['type'] == mask_head.__class__.__name__
        assert mask_cfg.in_channels == mask_head.in_channels
        assert (
            mask_cfg.conv_out_channels == mask_head.conv_logits.in_channels)
        class_agnostic = mask_cfg.get('class_agnostic', False)
        out_dim = (1 if class_agnostic else mask_cfg.num_classes)
        assert mask_head.conv_logits.out_channels == out_dim


def _check_bbox_head(bbox_cfg, bbox_head):
zhangwenwei's avatar
zhangwenwei committed
175
    from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    if isinstance(bbox_cfg, list):
        for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head):
            _check_bbox_head(single_bbox_cfg, single_bbox_head)
    elif isinstance(bbox_head, nn.ModuleList):
        for single_bbox_head in bbox_head:
            _check_bbox_head(bbox_cfg, single_bbox_head)
    else:
        assert bbox_cfg['type'] == bbox_head.__class__.__name__
        assert bbox_cfg.in_channels == bbox_head.in_channels
        with_cls = bbox_cfg.get('with_cls', True)
        if with_cls:
            fc_out_channels = bbox_cfg.get('fc_out_channels', 2048)
            assert (fc_out_channels == bbox_head.fc_cls.in_features)
            assert bbox_cfg.num_classes + 1 == bbox_head.fc_cls.out_features

        with_reg = bbox_cfg.get('with_reg', True)
        if with_reg:
            out_dim = (4 if bbox_cfg.reg_class_agnostic else 4 *
                       bbox_cfg.num_classes)
            assert bbox_head.fc_reg.out_features == out_dim
wuyuefeng's avatar
wuyuefeng committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224


def check_parta2_roi_head(config, head):
    assert config['type'] == head.__class__.__name__

    # check seg_roi_extractor
    seg_roi_cfg = config.seg_roi_extractor
    seg_roi_extractor = head.seg_roi_extractor
    _check_parta2_roi_extractor(seg_roi_cfg, seg_roi_extractor)

    # check part_roi_extractor
    part_roi_cfg = config.part_roi_extractor
    part_roi_extractor = head.part_roi_extractor
    _check_parta2_roi_extractor(part_roi_cfg, part_roi_extractor)

    # check bbox head infos
    bbox_cfg = config.bbox_head
    bbox_head = head.bbox_head
    _check_parta2_bbox_head(bbox_cfg, bbox_head)


def _check_parta2_roi_extractor(config, roi_extractor):
    assert config['type'] == roi_extractor.__class__.__name__
    assert (config.roi_layer.out_size == roi_extractor.roi_layer.out_size)
    assert (config.roi_layer.max_pts_per_voxel ==
            roi_extractor.roi_layer.max_pts_per_voxel)


def _check_parta2_bbox_head(bbox_cfg, bbox_head):
zhangwenwei's avatar
zhangwenwei committed
225
    from torch import nn as nn
wuyuefeng's avatar
wuyuefeng committed
226
227
228
229
230
231
232
233
234
235
236
    if isinstance(bbox_cfg, list):
        for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head):
            _check_bbox_head(single_bbox_cfg, single_bbox_head)
    elif isinstance(bbox_head, nn.ModuleList):
        for single_bbox_head in bbox_head:
            _check_bbox_head(bbox_cfg, single_bbox_head)
    else:
        assert bbox_cfg['type'] == bbox_head.__class__.__name__
        assert bbox_cfg.seg_in_channels == bbox_head.seg_conv[0][0].in_channels
        assert bbox_cfg.part_in_channels == bbox_head.part_conv[0][
            0].in_channels
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274


def check_h3d_roi_head(config, head):
    assert config['type'] == head.__class__.__name__

    # check seg_roi_extractor
    primitive_z_cfg = config.primitive_list[0]
    primitive_z_extractor = head.primitive_z
    _check_primitive_extractor(primitive_z_cfg, primitive_z_extractor)

    primitive_xy_cfg = config.primitive_list[1]
    primitive_xy_extractor = head.primitive_xy
    _check_primitive_extractor(primitive_xy_cfg, primitive_xy_extractor)

    primitive_line_cfg = config.primitive_list[2]
    primitive_line_extractor = head.primitive_line
    _check_primitive_extractor(primitive_line_cfg, primitive_line_extractor)

    # check bbox head infos
    bbox_cfg = config.bbox_head
    bbox_head = head.bbox_head
    _check_h3d_bbox_head(bbox_cfg, bbox_head)


def _check_primitive_extractor(config, primitive_extractor):
    assert config['type'] == primitive_extractor.__class__.__name__
    assert (config.num_dims == primitive_extractor.num_dims)
    assert (config.num_classes == primitive_extractor.num_classes)


def _check_h3d_bbox_head(bbox_cfg, bbox_head):
    assert bbox_cfg['type'] == bbox_head.__class__.__name__
    assert bbox_cfg.num_proposal * \
        6 == bbox_head.surface_center_matcher.num_point[0]
    assert bbox_cfg.num_proposal * \
        12 == bbox_head.line_center_matcher.num_point[0]
    assert bbox_cfg.suface_matching_cfg.mlp_channels[-1] * \
        18 == bbox_head.bbox_pred[0].in_channels