test_heads.py 52.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
wuyuefeng's avatar
wuyuefeng committed
2
import copy
liyinhao's avatar
liyinhao committed
3
import numpy as np
wuyuefeng's avatar
wuyuefeng committed
4
import pytest
liyinhao's avatar
liyinhao committed
5
import random
wuyuefeng's avatar
wuyuefeng committed
6
import torch
zhangwenwei's avatar
zhangwenwei committed
7
from os.path import dirname, exists, join
wuyuefeng's avatar
wuyuefeng committed
8

twang's avatar
twang committed
9
10
from mmdet3d.core.bbox import (Box3DMode, CameraInstance3DBoxes,
                               DepthInstance3DBoxes, LiDARInstance3DBoxes)
liyinhao's avatar
liyinhao committed
11
from mmdet3d.models.builder import build_head
12
from mmdet.apis import set_random_seed
liyinhao's avatar
liyinhao committed
13
14
15
16
17
18
19
20


def _setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
21

wuyuefeng's avatar
wuyuefeng committed
22
23

def _get_config_directory():
zhangwenwei's avatar
zhangwenwei committed
24
    """Find the predefined detector config directory."""
wuyuefeng's avatar
wuyuefeng committed
25
    try:
26
27
        # Assume we are running in the source mmdetection3d repo
        repo_dpath = dirname(dirname(dirname(dirname(__file__))))
wuyuefeng's avatar
wuyuefeng committed
28
29
    except NameError:
        # For IPython development when this __file__ is not defined
30
31
        import mmdet3d
        repo_dpath = dirname(dirname(mmdet3d.__file__))
wuyuefeng's avatar
wuyuefeng committed
32
33
34
35
36
37
38
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
zhangwenwei's avatar
zhangwenwei committed
39
    """Load a configuration as a python module."""
wuyuefeng's avatar
wuyuefeng committed
40
41
42
43
44
45
46
47
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_head_cfg(fname):
zhangwenwei's avatar
zhangwenwei committed
48
49
    """Grab configs necessary to create a bbox_head.

50
51
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
wuyuefeng's avatar
wuyuefeng committed
52
53
54
55
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
56
57
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
wuyuefeng's avatar
wuyuefeng committed
58
59
60
61
62
63
64
65

    bbox_head = model.bbox_head
    bbox_head.update(train_cfg=train_cfg)
    bbox_head.update(test_cfg=test_cfg)
    return bbox_head


def _get_rpn_head_cfg(fname):
zhangwenwei's avatar
zhangwenwei committed
66
67
    """Grab configs necessary to create a rpn_head.

68
69
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
wuyuefeng's avatar
wuyuefeng committed
70
71
72
73
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
74
75
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
wuyuefeng's avatar
wuyuefeng committed
76
77
78
79
80
81
82

    rpn_head = model.rpn_head
    rpn_head.update(train_cfg=train_cfg.rpn)
    rpn_head.update(test_cfg=test_cfg.rpn)
    return rpn_head, train_cfg.rpn_proposal


liyinhao's avatar
liyinhao committed
83
84
85
def _get_roi_head_cfg(fname):
    """Grab configs necessary to create a roi_head.

86
87
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
88
89
90
91
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
92
93
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
liyinhao's avatar
liyinhao committed
94
95
96
97
98
99
100
101
102
103

    roi_head = model.roi_head
    roi_head.update(train_cfg=train_cfg.rcnn)
    roi_head.update(test_cfg=test_cfg.rcnn)
    return roi_head


def _get_pts_bbox_head_cfg(fname):
    """Grab configs necessary to create a pts_bbox_head.

104
105
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
106
107
108
109
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
110
111
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg.pts))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg.pts))
liyinhao's avatar
liyinhao committed
112
113
114
115
116
117
118
119
120
121

    pts_bbox_head = model.pts_bbox_head
    pts_bbox_head.update(train_cfg=train_cfg)
    pts_bbox_head.update(test_cfg=test_cfg)
    return pts_bbox_head


def _get_vote_head_cfg(fname):
    """Grab configs necessary to create a vote_head.

122
123
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
124
125
126
127
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
128
129
    train_cfg = mmcv.Config(copy.deepcopy(config.model.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.model.test_cfg))
liyinhao's avatar
liyinhao committed
130
131
132
133
134
135
136
137
138
139

    vote_head = model.bbox_head
    vote_head.update(train_cfg=train_cfg)
    vote_head.update(test_cfg=test_cfg)
    return vote_head


def _get_parta2_bbox_head_cfg(fname):
    """Grab configs necessary to create a parta2_bbox_head.

140
141
    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
liyinhao's avatar
liyinhao committed
142
143
144
145
146
147
148
149
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    vote_head = model.roi_head.bbox_head
    return vote_head


zhangwenwei's avatar
zhangwenwei committed
150
def test_anchor3d_head_loss():
wuyuefeng's avatar
wuyuefeng committed
151
152
153
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    bbox_head_cfg = _get_head_cfg(
zhangwenwei's avatar
zhangwenwei committed
154
        'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')
wuyuefeng's avatar
wuyuefeng committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

    from mmdet3d.models.builder import build_head
    self = build_head(bbox_head_cfg)
    self.cuda()
    assert isinstance(self.conv_cls, torch.nn.modules.conv.Conv2d)
    assert self.conv_cls.in_channels == 512
    assert self.conv_cls.out_channels == 18
    assert self.conv_reg.out_channels == 42
    assert self.conv_dir_cls.out_channels == 12

    # test forward
    feats = list()
    feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)
    assert cls_score[0].shape == torch.Size([2, 18, 200, 176])
    assert bbox_pred[0].shape == torch.Size([2, 42, 200, 176])
    assert dir_cls_preds[0].shape == torch.Size([2, 12, 200, 176])

    # test loss
    gt_bboxes = list(
        torch.tensor(
            [[[6.4118, -3.4305, -1.7291, 1.7033, 3.4693, 1.6197, -0.9091]],
             [[16.9107, 9.7925, -1.9201, 1.6097, 3.2786, 1.5307, -2.4056]]],
            dtype=torch.float32).cuda())
    gt_labels = list(torch.tensor([[0], [1]], dtype=torch.int64).cuda())
    input_metas = [{
        'sample_idx': 1234
    }, {
        'sample_idx': 2345
    }]  # fake input_metas

    losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
                       gt_labels, input_metas)
zhangwenwei's avatar
zhangwenwei committed
188
189
190
    assert losses['loss_cls'][0] > 0
    assert losses['loss_bbox'][0] > 0
    assert losses['loss_dir'][0] > 0
wuyuefeng's avatar
wuyuefeng committed
191
192
193
194
195
196

    # test empty ground truth case
    gt_bboxes = list(torch.empty((2, 0, 7)).cuda())
    gt_labels = list(torch.empty((2, 0)).cuda())
    empty_gt_losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
                                gt_labels, input_metas)
zhangwenwei's avatar
zhangwenwei committed
197
198
199
    assert empty_gt_losses['loss_cls'][0] > 0
    assert empty_gt_losses['loss_bbox'][0] == 0
    assert empty_gt_losses['loss_dir'][0] == 0
wuyuefeng's avatar
wuyuefeng committed
200
201


zhangwenwei's avatar
zhangwenwei committed
202
def test_anchor3d_head_getboxes():
wuyuefeng's avatar
wuyuefeng committed
203
204
205
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    bbox_head_cfg = _get_head_cfg(
zhangwenwei's avatar
zhangwenwei committed
206
        'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')
wuyuefeng's avatar
wuyuefeng committed
207
208
209
210
211
212
213

    from mmdet3d.models.builder import build_head
    self = build_head(bbox_head_cfg)
    self.cuda()

    feats = list()
    feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
214
    # fake input_metas
wuyuefeng's avatar
wuyuefeng committed
215
    input_metas = [{
216
217
218
        'sample_idx': 1234,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
wuyuefeng's avatar
wuyuefeng committed
219
    }, {
220
221
222
223
        'sample_idx': 2345,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
    }]
wuyuefeng's avatar
wuyuefeng committed
224
225
226
227
228
229
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)

    # test get_boxes
    cls_score[0] -= 1.5  # too many positive samples may cause cuda oom
    result_list = self.get_bboxes(cls_score, bbox_pred, dir_cls_preds,
                                  input_metas)
zhangwenwei's avatar
zhangwenwei committed
230
    assert (result_list[0][1] > 0.3).all()
wuyuefeng's avatar
wuyuefeng committed
231
232
233
234
235
236


def test_parta2_rpnhead_getboxes():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    rpn_head_cfg, proposal_cfg = _get_rpn_head_cfg(
zhangwenwei's avatar
zhangwenwei committed
237
        'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
wuyuefeng's avatar
wuyuefeng committed
238
239
240
241
242
243

    self = build_head(rpn_head_cfg)
    self.cuda()

    feats = list()
    feats.append(torch.rand([2, 512, 200, 176], dtype=torch.float32).cuda())
244
    # fake input_metas
wuyuefeng's avatar
wuyuefeng committed
245
    input_metas = [{
246
247
248
        'sample_idx': 1234,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
wuyuefeng's avatar
wuyuefeng committed
249
    }, {
250
251
252
253
        'sample_idx': 2345,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
    }]
wuyuefeng's avatar
wuyuefeng committed
254
255
256
257
258
259
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)

    # test get_boxes
    cls_score[0] -= 1.5  # too many positive samples may cause cuda oom
    result_list = self.get_bboxes(cls_score, bbox_pred, dir_cls_preds,
                                  input_metas, proposal_cfg)
zhangwenwei's avatar
zhangwenwei committed
260
261
    assert result_list[0]['scores_3d'].shape == torch.Size([512])
    assert result_list[0]['labels_3d'].shape == torch.Size([512])
wuyuefeng's avatar
wuyuefeng committed
262
    assert result_list[0]['cls_preds'].shape == torch.Size([512, 3])
263
    assert result_list[0]['boxes_3d'].tensor.shape == torch.Size([512, 7])
wuyuefeng's avatar
Votenet  
wuyuefeng committed
264
265
266
267
268


def test_vote_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
liyinhao's avatar
liyinhao committed
269
270
271
272
273
274
275
    _setup_seed(0)
    vote_head_cfg = _get_vote_head_cfg(
        'votenet/votenet_8x8_scannet-3d-18class.py')
    self = build_head(vote_head_cfg).cuda()
    fp_xyz = [torch.rand([2, 256, 3], dtype=torch.float32).cuda()]
    fp_features = [torch.rand([2, 256, 256], dtype=torch.float32).cuda()]
    fp_indices = [torch.randint(0, 128, [2, 256]).cuda()]
wuyuefeng's avatar
Votenet  
wuyuefeng committed
276
277
278

    input_dict = dict(
        fp_xyz=fp_xyz, fp_features=fp_features, fp_indices=fp_indices)
liyinhao's avatar
liyinhao committed
279

wuyuefeng's avatar
Votenet  
wuyuefeng committed
280
281
282
283
    # test forward
    ret_dict = self(input_dict, 'vote')
    assert ret_dict['center'].shape == torch.Size([2, 256, 3])
    assert ret_dict['obj_scores'].shape == torch.Size([2, 256, 2])
liyinhao's avatar
liyinhao committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    assert ret_dict['size_res'].shape == torch.Size([2, 256, 18, 3])
    assert ret_dict['dir_res'].shape == torch.Size([2, 256, 1])

    # test loss
    points = [torch.rand([40000, 4], device='cuda') for i in range(2)]
    gt_bbox1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox2 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox1, gt_bbox2]
    gt_labels = [torch.randint(0, 18, [10], device='cuda') for i in range(2)]
    pts_semantic_mask = [
        torch.randint(0, 18, [40000], device='cuda') for i in range(2)
    ]
    pts_instance_mask = [
        torch.randint(0, 10, [40000], device='cuda') for i in range(2)
    ]
    losses = self.loss(ret_dict, points, gt_bboxes, gt_labels,
                       pts_semantic_mask, pts_instance_mask)
    assert losses['vote_loss'] >= 0
    assert losses['objectness_loss'] >= 0
    assert losses['semantic_loss'] >= 0
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
    assert losses['size_class_loss'] >= 0
    assert losses['size_res_loss'] >= 0

    # test multiclass_nms_single
    obj_scores = torch.rand([256], device='cuda')
    sem_scores = torch.rand([256, 18], device='cuda')
    points = torch.rand([40000, 3], device='cuda')
    bbox = torch.rand([256, 7], device='cuda')
    input_meta = dict(box_type_3d=DepthInstance3DBoxes)
    bbox_selected, score_selected, labels = self.multiclass_nms_single(
        obj_scores, sem_scores, bbox, points, input_meta)
    assert bbox_selected.shape[0] >= 0
    assert bbox_selected.shape[1] == 7
    assert score_selected.shape[0] >= 0
    assert labels.shape[0] >= 0

    # test get_boxes
    points = torch.rand([1, 40000, 4], device='cuda')
    seed_points = torch.rand([1, 1024, 3], device='cuda')
    seed_indices = torch.randint(0, 40000, [1, 1024], device='cuda')
    vote_points = torch.rand([1, 1024, 3], device='cuda')
    vote_features = torch.rand([1, 256, 1024], device='cuda')
    aggregated_points = torch.rand([1, 256, 3], device='cuda')
    aggregated_indices = torch.range(0, 256, device='cuda')
    obj_scores = torch.rand([1, 256, 2], device='cuda')
    center = torch.rand([1, 256, 3], device='cuda')
    dir_class = torch.rand([1, 256, 1], device='cuda')
    dir_res_norm = torch.rand([1, 256, 1], device='cuda')
    dir_res = torch.rand([1, 256, 1], device='cuda')
    size_class = torch.rand([1, 256, 18], device='cuda')
    size_res = torch.rand([1, 256, 18, 3], device='cuda')
    sem_scores = torch.rand([1, 256, 18], device='cuda')
    bbox_preds = dict(
        seed_points=seed_points,
        seed_indices=seed_indices,
        vote_points=vote_points,
        vote_features=vote_features,
        aggregated_points=aggregated_points,
        aggregated_indices=aggregated_indices,
        obj_scores=obj_scores,
        center=center,
        dir_class=dir_class,
        dir_res_norm=dir_res_norm,
        dir_res=dir_res,
        size_class=size_class,
        size_res=size_res,
        sem_scores=sem_scores)
    results = self.get_bboxes(points, bbox_preds, [input_meta])
    assert results[0][0].tensor.shape[0] >= 0
    assert results[0][0].tensor.shape[1] == 7
    assert results[0][1].shape[0] >= 0
    assert results[0][2].shape[0] >= 0


361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
def test_smoke_mono3d_head():

    head_cfg = dict(
        type='SMOKEMono3DHead',
        num_classes=3,
        in_channels=64,
        dim_channel=[3, 4, 5],
        ori_channel=[6, 7],
        stacked_convs=0,
        feat_channels=64,
        use_direction_classifier=False,
        diff_rad_by_sin=False,
        pred_attrs=False,
        pred_velo=False,
        dir_offset=0,
        strides=None,
        group_reg_dims=(8, ),
        cls_branch=(256, ),
        reg_branch=((256, ), ),
        num_attrs=0,
        bbox_code_size=7,
        dir_branch=(),
        attr_branch=(),
        bbox_coder=dict(
            type='SMOKECoder',
            base_depth=(28.01, 16.32),
            base_dims=((0.88, 1.73, 0.67), (1.78, 1.70, 0.58), (3.88, 1.63,
                                                                1.53)),
            code_size=7),
        loss_cls=dict(type='GaussianFocalLoss', loss_weight=1.0),
        loss_bbox=dict(type='L1Loss', reduction='sum', loss_weight=1 / 300),
        loss_dir=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
        loss_attr=None,
        conv_bias=True,
        dcn_on_last_conv=False)

    self = build_head(head_cfg)

    feats = [torch.rand([2, 64, 32, 32], dtype=torch.float32)]

    # test forward
    ret_dict = self(feats)

    assert len(ret_dict) == 2
    assert len(ret_dict[0]) == 1
    assert ret_dict[0][0].shape == torch.Size([2, 3, 32, 32])
    assert ret_dict[1][0].shape == torch.Size([2, 8, 32, 32])

    # test loss
    gt_bboxes = [
        torch.Tensor([[1.0, 2.0, 20.0, 40.0], [45.0, 50.0, 80.0, 70.1],
                      [34.0, 39.0, 65.0, 64.0]]),
        torch.Tensor([[11.0, 22.0, 29.0, 31.0], [41.0, 55.0, 60.0, 99.0],
                      [29.0, 29.0, 65.0, 56.0]])
    ]
    gt_bboxes_3d = [
        CameraInstance3DBoxes(torch.rand([3, 7]), box_dim=7),
        CameraInstance3DBoxes(torch.rand([3, 7]), box_dim=7)
    ]
    gt_labels = [torch.randint(0, 3, [3]) for i in range(2)]
    gt_labels_3d = gt_labels
    centers2d = [torch.randint(0, 60, (3, 2)), torch.randint(0, 40, (3, 2))]
    depths = [
        torch.rand([3], dtype=torch.float32),
        torch.rand([3], dtype=torch.float32)
    ]
    attr_labels = None
    img_metas = [
        dict(
431
432
433
            cam2img=[[1260.8474446004698, 0.0, 807.968244525554, 40.1111],
                     [0.0, 1260.8474446004698, 495.3344268742088, 2.34422],
                     [0.0, 0.0, 1.0, 0.00333333], [0.0, 0.0, 0.0, 1.0]],
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
            scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
            pad_shape=[128, 128],
            trans_mat=np.array([[0.25, 0., 0.], [0., 0.25, 0], [0., 0., 1.]],
                               dtype=np.float32),
            affine_aug=False,
            box_type_3d=CameraInstance3DBoxes) for i in range(2)
    ]
    losses = self.loss(*ret_dict, gt_bboxes, gt_labels, gt_bboxes_3d,
                       gt_labels_3d, centers2d, depths, attr_labels, img_metas)

    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0

    # test get_boxes
    results = self.get_bboxes(*ret_dict, img_metas)
    assert len(results) == 2
    assert len(results[0]) == 4
    assert results[0][0].tensor.shape == torch.Size([100, 7])
    assert results[0][1].shape == torch.Size([100])
    assert results[0][2].shape == torch.Size([100])
    assert results[0][3] is None


liyinhao's avatar
liyinhao committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
def test_parta2_bbox_head():
    parta2_bbox_head_cfg = _get_parta2_bbox_head_cfg(
        './parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
    self = build_head(parta2_bbox_head_cfg)
    seg_feats = torch.rand([256, 14, 14, 14, 16])
    part_feats = torch.rand([256, 14, 14, 14, 4])

    cls_score, bbox_pred = self.forward(seg_feats, part_feats)
    assert cls_score.shape == (256, 1)
    assert bbox_pred.shape == (256, 7)


def test_part_aggregation_ROI_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    roi_head_cfg = _get_roi_head_cfg(
        'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
    self = build_head(roi_head_cfg).cuda()
476
477
478
479
480
481
482
483
484
485
486

    features = np.load('./tests/test_samples/parta2_roihead_inputs.npz')
    seg_features = torch.tensor(
        features['seg_features'], dtype=torch.float32, device='cuda')
    feats_dict = dict(seg_features=seg_features)

    voxels = torch.tensor(
        features['voxels'], dtype=torch.float32, device='cuda')
    num_points = torch.ones([500], device='cuda')
    coors = torch.zeros([500, 4], device='cuda')
    voxel_centers = torch.zeros([500, 3], device='cuda')
liyinhao's avatar
liyinhao committed
487
488
489
490
491
492
493
494
    box_type_3d = LiDARInstance3DBoxes
    img_metas = [dict(box_type_3d=box_type_3d)]
    voxels_dict = dict(
        voxels=voxels,
        num_points=num_points,
        coors=coors,
        voxel_centers=voxel_centers)

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
    pred_bboxes = LiDARInstance3DBoxes(
        torch.tensor(
            [[0.3990, 0.5167, 0.0249, 0.9401, 0.9459, 0.7967, 0.4150],
             [0.8203, 0.2290, 0.9096, 0.1183, 0.0752, 0.4092, 0.9601],
             [0.2093, 0.1940, 0.8909, 0.4387, 0.3570, 0.5454, 0.8299],
             [0.2099, 0.7684, 0.4290, 0.2117, 0.6606, 0.1654, 0.4250],
             [0.9927, 0.6964, 0.2472, 0.7028, 0.7494, 0.9303, 0.0494]],
            dtype=torch.float32,
            device='cuda'))
    pred_scores = torch.tensor([0.9722, 0.7910, 0.4690, 0.3300, 0.3345],
                               dtype=torch.float32,
                               device='cuda')
    pred_labels = torch.tensor([0, 1, 0, 2, 1],
                               dtype=torch.int64,
                               device='cuda')
    pred_clses = torch.tensor(
        [[0.7874, 0.1344, 0.2190], [0.8193, 0.6969, 0.7304],
         [0.2328, 0.9028, 0.3900], [0.6177, 0.5012, 0.2330],
         [0.8985, 0.4894, 0.7152]],
        dtype=torch.float32,
        device='cuda')
liyinhao's avatar
liyinhao committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
    proposal = dict(
        boxes_3d=pred_bboxes,
        scores_3d=pred_scores,
        labels_3d=pred_labels,
        cls_preds=pred_clses)
    proposal_list = [proposal]
    gt_bboxes_3d = [LiDARInstance3DBoxes(torch.rand([5, 7], device='cuda'))]
    gt_labels_3d = [torch.randint(0, 3, [5], device='cuda')]

    losses = self.forward_train(feats_dict, voxels_dict, {}, proposal_list,
                                gt_bboxes_3d, gt_labels_3d)
    assert losses['loss_seg'] >= 0
    assert losses['loss_part'] >= 0
    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0
    assert losses['loss_corner'] >= 0

    bbox_results = self.simple_test(feats_dict, voxels_dict, img_metas,
                                    proposal_list)
535
536
537
538
539
540
    boxes_3d = bbox_results[0]['boxes_3d']
    scores_3d = bbox_results[0]['scores_3d']
    labels_3d = bbox_results[0]['labels_3d']
    assert boxes_3d.tensor.shape == (12, 7)
    assert scores_3d.shape == (12, )
    assert labels_3d.shape == (12, )
liyinhao's avatar
liyinhao committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572


def test_free_anchor_3D_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    pts_bbox_head_cfg = _get_pts_bbox_head_cfg(
        './free_anchor/hv_pointpillars_fpn_sbn-all_'
        'free-anchor_4x8_2x_nus-3d.py')
    self = build_head(pts_bbox_head_cfg)
    cls_scores = [
        torch.rand([4, 80, 200, 200], device='cuda') for i in range(3)
    ]
    bbox_preds = [
        torch.rand([4, 72, 200, 200], device='cuda') for i in range(3)
    ]
    dir_cls_preds = [
        torch.rand([4, 16, 200, 200], device='cuda') for i in range(3)
    ]
    gt_bboxes = [
        LiDARInstance3DBoxes(torch.rand([8, 9], device='cuda'), box_dim=9)
        for i in range(4)
    ]
    gt_labels = [
        torch.randint(0, 10, [8], device='cuda', dtype=torch.long)
        for i in range(4)
    ]
    input_metas = [0]
    losses = self.loss(cls_scores, bbox_preds, dir_cls_preds, gt_bboxes,
                       gt_labels, input_metas, None)
    assert losses['positive_bag_loss'] >= 0
    assert losses['negative_bag_loss'] >= 0
encore-zhou's avatar
encore-zhou committed
573
574
575
576
577
578
579
580
581
582
583
584


def test_primitive_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)

    primitive_head_cfg = dict(
        type='PrimitiveHead',
        num_dims=2,
        num_classes=18,
        primitive_mode='z',
585
        vote_module_cfg=dict(
encore-zhou's avatar
encore-zhou committed
586
587
588
589
590
591
592
593
594
595
596
597
598
            in_channels=256,
            vote_per_seed=1,
            gt_per_seed=1,
            conv_channels=(256, 256),
            conv_cfg=dict(type='Conv1d'),
            norm_cfg=dict(type='BN1d'),
            norm_feats=True,
            vote_loss=dict(
                type='ChamferDistance',
                mode='l1',
                reduction='none',
                loss_dst_weight=10.0)),
        vote_aggregation_cfg=dict(
599
            type='PointSAModule',
encore-zhou's avatar
encore-zhou committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
            num_point=64,
            radius=0.3,
            num_sample=16,
            mlp_channels=[256, 128, 128, 128],
            use_xyz=True,
            normalize_xyz=True),
        feat_channels=(128, 128),
        conv_cfg=dict(type='Conv1d'),
        norm_cfg=dict(type='BN1d'),
        objectness_loss=dict(
            type='CrossEntropyLoss',
            class_weight=[0.4, 0.6],
            reduction='mean',
            loss_weight=1.0),
        center_loss=dict(
            type='ChamferDistance',
            mode='l1',
            reduction='sum',
            loss_src_weight=1.0,
            loss_dst_weight=1.0),
        semantic_reg_loss=dict(
            type='ChamferDistance',
            mode='l1',
            reduction='sum',
            loss_src_weight=1.0,
            loss_dst_weight=1.0),
        semantic_cls_loss=dict(
            type='CrossEntropyLoss', reduction='sum', loss_weight=1.0),
        train_cfg=dict(
            dist_thresh=0.2,
            var_thresh=1e-2,
            lower_thresh=1e-6,
            num_point=100,
            num_point_line=10,
            line_thresh=0.2))

    self = build_head(primitive_head_cfg).cuda()
    fp_xyz = [torch.rand([2, 64, 3], dtype=torch.float32).cuda()]
    hd_features = torch.rand([2, 256, 64], dtype=torch.float32).cuda()
    fp_indices = [torch.randint(0, 64, [2, 64]).cuda()]
    input_dict = dict(
        fp_xyz_net0=fp_xyz, hd_feature=hd_features, fp_indices_net0=fp_indices)

    # test forward
    ret_dict = self(input_dict, 'vote')
    assert ret_dict['center_z'].shape == torch.Size([2, 64, 3])
    assert ret_dict['size_residuals_z'].shape == torch.Size([2, 64, 2])
    assert ret_dict['sem_cls_scores_z'].shape == torch.Size([2, 64, 18])
    assert ret_dict['aggregated_points_z'].shape == torch.Size([2, 64, 3])

    # test loss
    points = torch.rand([2, 1024, 3], dtype=torch.float32).cuda()
    ret_dict['seed_points'] = fp_xyz[0]
    ret_dict['seed_indices'] = fp_indices[0]

    from mmdet3d.core.bbox import DepthInstance3DBoxes
    gt_bboxes_3d = [
        DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda()),
        DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda())
    ]
    gt_labels_3d = torch.randint(0, 18, [2, 4]).cuda()
    gt_labels_3d = [gt_labels_3d[0], gt_labels_3d[1]]
    pts_semantic_mask = torch.randint(0, 19, [2, 1024]).cuda()
    pts_semantic_mask = [pts_semantic_mask[0], pts_semantic_mask[1]]
    pts_instance_mask = torch.randint(0, 4, [2, 1024]).cuda()
    pts_instance_mask = [pts_instance_mask[0], pts_instance_mask[1]]

    loss_input_dict = dict(
        bbox_preds=ret_dict,
        points=points,
        gt_bboxes_3d=gt_bboxes_3d,
        gt_labels_3d=gt_labels_3d,
        pts_semantic_mask=pts_semantic_mask,
        pts_instance_mask=pts_instance_mask)
    losses_dict = self.loss(**loss_input_dict)

    assert losses_dict['flag_loss_z'] >= 0
    assert losses_dict['vote_loss_z'] >= 0
    assert losses_dict['center_loss_z'] >= 0
    assert losses_dict['size_loss_z'] >= 0
    assert losses_dict['sem_loss_z'] >= 0

    # 'Primitive_mode' should be one of ['z', 'xy', 'line']
    with pytest.raises(AssertionError):
684
        primitive_head_cfg['vote_module_cfg']['in_channels'] = 'xyz'
encore-zhou's avatar
encore-zhou committed
685
        build_head(primitive_head_cfg)
encore-zhou's avatar
encore-zhou committed
686
687
688
689
690
691
692


def test_h3d_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)

693
    h3d_head_cfg = _get_roi_head_cfg('h3dnet/h3dnet_3x8_scannet-3d-18class.py')
694
695
696
697
698
699
700

    num_point = 128
    num_proposal = 64
    h3d_head_cfg.primitive_list[0].vote_aggregation_cfg.num_point = num_point
    h3d_head_cfg.primitive_list[1].vote_aggregation_cfg.num_point = num_point
    h3d_head_cfg.primitive_list[2].vote_aggregation_cfg.num_point = num_point
    h3d_head_cfg.bbox_head.num_proposal = num_proposal
encore-zhou's avatar
encore-zhou committed
701
702
703
    self = build_head(h3d_head_cfg).cuda()

    # prepare roi outputs
704
705
706
707
708
709
710
    fp_xyz = [torch.rand([1, num_point, 3], dtype=torch.float32).cuda()]
    hd_features = torch.rand([1, 256, num_point], dtype=torch.float32).cuda()
    fp_indices = [torch.randint(0, 128, [1, num_point]).cuda()]
    aggregated_points = torch.rand([1, num_proposal, 3],
                                   dtype=torch.float32).cuda()
    aggregated_features = torch.rand([1, 128, num_proposal],
                                     dtype=torch.float32).cuda()
711
    proposal_list = torch.cat([
712
713
714
        torch.rand([1, num_proposal, 3], dtype=torch.float32).cuda() * 4 - 2,
        torch.rand([1, num_proposal, 3], dtype=torch.float32).cuda() * 4,
        torch.zeros([1, num_proposal, 1]).cuda()
encore-zhou's avatar
encore-zhou committed
715
716
717
718
719
720
721
722
723
724
    ],
                              dim=-1)

    input_dict = dict(
        fp_xyz_net0=fp_xyz,
        hd_feature=hd_features,
        aggregated_points=aggregated_points,
        aggregated_features=aggregated_features,
        seed_points=fp_xyz[0],
        seed_indices=fp_indices[0],
725
        proposal_list=proposal_list)
encore-zhou's avatar
encore-zhou committed
726
727
728
729
730
731
732
733
734

    # prepare gt label
    from mmdet3d.core.bbox import DepthInstance3DBoxes
    gt_bboxes_3d = [
        DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda()),
        DepthInstance3DBoxes(torch.rand([4, 7], dtype=torch.float32).cuda())
    ]
    gt_labels_3d = torch.randint(0, 18, [1, 4]).cuda()
    gt_labels_3d = [gt_labels_3d[0]]
735
    pts_semantic_mask = torch.randint(0, 19, [1, num_point]).cuda()
encore-zhou's avatar
encore-zhou committed
736
    pts_semantic_mask = [pts_semantic_mask[0]]
737
    pts_instance_mask = torch.randint(0, 4, [1, num_point]).cuda()
encore-zhou's avatar
encore-zhou committed
738
    pts_instance_mask = [pts_instance_mask[0]]
739
    points = torch.rand([1, num_point, 3], dtype=torch.float32).cuda()
encore-zhou's avatar
encore-zhou committed
740
741

    # prepare rpn targets
742
743
744
    vote_targets = torch.rand([1, num_point, 9], dtype=torch.float32).cuda()
    vote_target_masks = torch.rand([1, num_point], dtype=torch.float32).cuda()
    size_class_targets = torch.rand([1, num_proposal],
encore-zhou's avatar
encore-zhou committed
745
                                    dtype=torch.float32).cuda().long()
746
747
748
749
750
    size_res_targets = torch.rand([1, num_proposal, 3],
                                  dtype=torch.float32).cuda()
    dir_class_targets = torch.rand([1, num_proposal],
                                   dtype=torch.float32).cuda().long()
    dir_res_targets = torch.rand([1, num_proposal], dtype=torch.float32).cuda()
encore-zhou's avatar
encore-zhou committed
751
    center_targets = torch.rand([1, 4, 3], dtype=torch.float32).cuda()
752
753
    mask_targets = torch.rand([1, num_proposal],
                              dtype=torch.float32).cuda().long()
encore-zhou's avatar
encore-zhou committed
754
    valid_gt_masks = torch.rand([1, 4], dtype=torch.float32).cuda()
755
    objectness_targets = torch.rand([1, num_proposal],
encore-zhou's avatar
encore-zhou committed
756
                                    dtype=torch.float32).cuda().long()
757
758
759
760
    objectness_weights = torch.rand([1, num_proposal],
                                    dtype=torch.float32).cuda()
    box_loss_weights = torch.rand([1, num_proposal],
                                  dtype=torch.float32).cuda()
encore-zhou's avatar
encore-zhou committed
761
762
763
764
    valid_gt_weights = torch.rand([1, 4], dtype=torch.float32).cuda()

    targets = (vote_targets, vote_target_masks, size_class_targets,
               size_res_targets, dir_class_targets, dir_res_targets,
765
               center_targets, None, mask_targets, valid_gt_masks,
encore-zhou's avatar
encore-zhou committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
               objectness_targets, objectness_weights, box_loss_weights,
               valid_gt_weights)

    input_dict['targets'] = targets

    # train forward
    ret_dict = self.forward_train(
        input_dict,
        points=points,
        gt_bboxes_3d=gt_bboxes_3d,
        gt_labels_3d=gt_labels_3d,
        pts_semantic_mask=pts_semantic_mask,
        pts_instance_mask=pts_instance_mask,
        img_metas=None)

    assert ret_dict['flag_loss_z'] >= 0
    assert ret_dict['vote_loss_z'] >= 0
    assert ret_dict['center_loss_z'] >= 0
    assert ret_dict['size_loss_z'] >= 0
    assert ret_dict['sem_loss_z'] >= 0
786
    assert ret_dict['objectness_loss_optimized'] >= 0
encore-zhou's avatar
encore-zhou committed
787
    assert ret_dict['primitive_sem_matching_loss'] >= 0
788
789


790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
def test_center_head():
    tasks = [
        dict(num_class=1, class_names=['car']),
        dict(num_class=2, class_names=['truck', 'construction_vehicle']),
        dict(num_class=2, class_names=['bus', 'trailer']),
        dict(num_class=1, class_names=['barrier']),
        dict(num_class=2, class_names=['motorcycle', 'bicycle']),
        dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),
    ]
    bbox_cfg = dict(
        type='CenterPointBBoxCoder',
        post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        max_num=500,
        score_threshold=0.1,
        pc_range=[-51.2, -51.2],
        out_size_factor=8,
        voxel_size=[0.2, 0.2])
    train_cfg = dict(
        grid_size=[1024, 1024, 40],
        point_cloud_range=[-51.2, -51.2, -5., 51.2, 51.2, 3.],
        voxel_size=[0.1, 0.1, 0.2],
        out_size_factor=8,
        dense_reg=1,
        gaussian_overlap=0.1,
        max_objs=500,
        code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0],
        min_radius=2)
    test_cfg = dict(
        post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        max_per_img=500,
        max_pool_nms=False,
        min_radius=[4, 12, 10, 1, 0.85, 0.175],
        post_max_size=83,
        score_threshold=0.1,
        pc_range=[-51.2, -51.2],
        out_size_factor=8,
        voxel_size=[0.2, 0.2],
        nms_type='circle')
    center_head_cfg = dict(
        type='CenterHead',
        in_channels=sum([256, 256]),
        tasks=tasks,
        train_cfg=train_cfg,
        test_cfg=test_cfg,
        bbox_coder=bbox_cfg,
        common_heads=dict(
            reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2), vel=(2, 2)),
        share_conv_channel=64,
        norm_bbox=True)

    center_head = build_head(center_head_cfg)

    x = torch.rand([2, 512, 128, 128])
    output = center_head([x])
    for i in range(6):
        assert output[i][0]['reg'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['height'].shape == torch.Size([2, 1, 128, 128])
        assert output[i][0]['dim'].shape == torch.Size([2, 3, 128, 128])
        assert output[i][0]['rot'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['vel'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['heatmap'].shape == torch.Size(
            [2, tasks[i]['num_class'], 128, 128])

    # test get_bboxes
    img_metas = [
        dict(box_type_3d=LiDARInstance3DBoxes),
        dict(box_type_3d=LiDARInstance3DBoxes)
    ]
    ret_lists = center_head.get_bboxes(output, img_metas)
    for ret_list in ret_lists:
        assert ret_list[0].tensor.shape[0] <= 500
        assert ret_list[1].shape[0] <= 500
        assert ret_list[2].shape[0] <= 500


def test_dcn_center_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and CUDA')
    set_random_seed(0)
    tasks = [
        dict(num_class=1, class_names=['car']),
        dict(num_class=2, class_names=['truck', 'construction_vehicle']),
        dict(num_class=2, class_names=['bus', 'trailer']),
        dict(num_class=1, class_names=['barrier']),
        dict(num_class=2, class_names=['motorcycle', 'bicycle']),
        dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),
    ]
    voxel_size = [0.2, 0.2, 8]
    dcn_center_head_cfg = dict(
        type='CenterHead',
        in_channels=sum([128, 128, 128]),
        tasks=[
            dict(num_class=1, class_names=['car']),
            dict(num_class=2, class_names=['truck', 'construction_vehicle']),
            dict(num_class=2, class_names=['bus', 'trailer']),
            dict(num_class=1, class_names=['barrier']),
            dict(num_class=2, class_names=['motorcycle', 'bicycle']),
            dict(num_class=2, class_names=['pedestrian', 'traffic_cone']),
        ],
        common_heads={
            'reg': (2, 2),
            'height': (1, 2),
            'dim': (3, 2),
            'rot': (2, 2),
            'vel': (2, 2)
        },
        share_conv_channel=64,
        bbox_coder=dict(
            type='CenterPointBBoxCoder',
            post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
            max_num=500,
            score_threshold=0.1,
            pc_range=[-51.2, -51.2],
            out_size_factor=4,
            voxel_size=voxel_size[:2],
            code_size=9),
906
907
        separate_head=dict(
            type='DCNSeparateHead',
908
909
910
911
912
913
914
            dcn_config=dict(
                type='DCN',
                in_channels=64,
                out_channels=64,
                kernel_size=3,
                padding=1,
                groups=4,
915
                bias=False),  # mmcv 1.2.6 doesn't support bias=True anymore
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
            init_bias=-2.19,
            final_kernel=3),
        loss_cls=dict(type='GaussianFocalLoss', reduction='mean'),
        loss_bbox=dict(type='L1Loss', reduction='none', loss_weight=0.25),
        norm_bbox=True)
    # model training and testing settings
    train_cfg = dict(
        grid_size=[512, 512, 1],
        point_cloud_range=[-51.2, -51.2, -5., 51.2, 51.2, 3.],
        voxel_size=voxel_size,
        out_size_factor=4,
        dense_reg=1,
        gaussian_overlap=0.1,
        max_objs=500,
        min_radius=2,
        code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 1.0, 1.0])

    test_cfg = dict(
        post_center_limit_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
        max_per_img=500,
        max_pool_nms=False,
        min_radius=[4, 12, 10, 1, 0.85, 0.175],
        post_max_size=83,
        score_threshold=0.1,
        pc_range=[-51.2, -51.2],
        out_size_factor=4,
        voxel_size=voxel_size[:2],
        nms_type='circle')
    dcn_center_head_cfg.update(train_cfg=train_cfg, test_cfg=test_cfg)

    dcn_center_head = build_head(dcn_center_head_cfg).cuda()

    x = torch.ones([2, 384, 128, 128]).cuda()
    output = dcn_center_head([x])
    for i in range(6):
        assert output[i][0]['reg'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['height'].shape == torch.Size([2, 1, 128, 128])
        assert output[i][0]['dim'].shape == torch.Size([2, 3, 128, 128])
        assert output[i][0]['rot'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['vel'].shape == torch.Size([2, 2, 128, 128])
        assert output[i][0]['heatmap'].shape == torch.Size(
            [2, tasks[i]['num_class'], 128, 128])

    # Test loss.
    gt_bboxes_0 = LiDARInstance3DBoxes(torch.rand([10, 9]).cuda(), box_dim=9)
    gt_bboxes_1 = LiDARInstance3DBoxes(torch.rand([20, 9]).cuda(), box_dim=9)
    gt_labels_0 = torch.randint(1, 11, [10]).cuda()
    gt_labels_1 = torch.randint(1, 11, [20]).cuda()
    gt_bboxes_3d = [gt_bboxes_0, gt_bboxes_1]
    gt_labels_3d = [gt_labels_0, gt_labels_1]
    loss = dcn_center_head.loss(gt_bboxes_3d, gt_labels_3d, output)
967
968
969
970
971
    for key, item in loss.items():
        if 'heatmap' in key:
            assert item >= 0
        else:
            assert torch.sum(item) >= 0
972
973
974
975
976
977
978
979
980
981
982
983
984

    # test get_bboxes
    img_metas = [
        dict(box_type_3d=LiDARInstance3DBoxes),
        dict(box_type_3d=LiDARInstance3DBoxes)
    ]
    ret_lists = dcn_center_head.get_bboxes(output, img_metas)
    for ret_list in ret_lists:
        assert ret_list[0].tensor.shape[0] <= 500
        assert ret_list[1].shape[0] <= 500
        assert ret_list[2].shape[0] <= 500


985
986
987
988
def test_ssd3d_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
989
    ssd3d_head_cfg = _get_vote_head_cfg('3dssd/3dssd_4x4_kitti-3d-car.py')
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
    ssd3d_head_cfg.vote_module_cfg.num_points = 64
    self = build_head(ssd3d_head_cfg).cuda()
    sa_xyz = [torch.rand([2, 128, 3], dtype=torch.float32).cuda()]
    sa_features = [torch.rand([2, 256, 128], dtype=torch.float32).cuda()]
    sa_indices = [torch.randint(0, 64, [2, 128]).cuda()]

    input_dict = dict(
        sa_xyz=sa_xyz, sa_features=sa_features, sa_indices=sa_indices)

    # test forward
    ret_dict = self(input_dict, 'spec')
    assert ret_dict['center'].shape == torch.Size([2, 64, 3])
    assert ret_dict['obj_scores'].shape == torch.Size([2, 1, 64])
    assert ret_dict['size'].shape == torch.Size([2, 64, 3])
    assert ret_dict['dir_res'].shape == torch.Size([2, 64, 12])

    # test loss
1007
    points = [torch.rand([4000, 3], device='cuda') for i in range(2)]
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
    gt_bbox1 = LiDARInstance3DBoxes(torch.rand([5, 7], device='cuda'))
    gt_bbox2 = LiDARInstance3DBoxes(torch.rand([5, 7], device='cuda'))
    gt_bboxes = [gt_bbox1, gt_bbox2]
    gt_labels = [
        torch.zeros([5], dtype=torch.long, device='cuda') for i in range(2)
    ]
    img_metas = [dict(box_type_3d=LiDARInstance3DBoxes) for i in range(2)]
    losses = self.loss(
        ret_dict, points, gt_bboxes, gt_labels, img_metas=img_metas)

    assert losses['centerness_loss'] >= 0
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
    assert losses['size_res_loss'] >= 0
    assert losses['corner_loss'] >= 0
    assert losses['vote_loss'] >= 0

    # test multiclass_nms_single
    sem_scores = ret_dict['obj_scores'].transpose(1, 2)[0]
    obj_scores = sem_scores.max(-1)[0]
    bbox = self.bbox_coder.decode(ret_dict)[0]
    input_meta = img_metas[0]
    bbox_selected, score_selected, labels = self.multiclass_nms_single(
        obj_scores, sem_scores, bbox, points[0], input_meta)
    assert bbox_selected.shape[0] >= 0
    assert bbox_selected.shape[1] == 7
    assert score_selected.shape[0] >= 0
    assert labels.shape[0] >= 0

    # test get_boxes
    points = torch.stack(points, 0)
    results = self.get_bboxes(points, ret_dict, img_metas)
    assert results[0][0].tensor.shape[0] >= 0
    assert results[0][0].tensor.shape[1] == 7
    assert results[0][1].shape[0] >= 0
    assert results[0][2].shape[0] >= 0
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143


def test_shape_aware_head_loss():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    bbox_head_cfg = _get_pts_bbox_head_cfg(
        'ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py')
    # modify bn config to avoid bugs caused by syncbn
    for task in bbox_head_cfg['tasks']:
        task['norm_cfg'] = dict(type='BN2d')

    from mmdet3d.models.builder import build_head
    self = build_head(bbox_head_cfg)
    self.cuda()
    assert len(self.heads) == 4
    assert isinstance(self.heads[0].conv_cls, torch.nn.modules.conv.Conv2d)
    assert self.heads[0].conv_cls.in_channels == 64
    assert self.heads[0].conv_cls.out_channels == 36
    assert self.heads[0].conv_reg.out_channels == 28
    assert self.heads[0].conv_dir_cls.out_channels == 8

    # test forward
    feats = list()
    feats.append(torch.rand([2, 384, 200, 200], dtype=torch.float32).cuda())
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)
    assert cls_score[0].shape == torch.Size([2, 420000, 9])
    assert bbox_pred[0].shape == torch.Size([2, 420000, 7])
    assert dir_cls_preds[0].shape == torch.Size([2, 420000, 2])

    # test loss
    gt_bboxes = [
        LiDARInstance3DBoxes(
            torch.tensor(
                [[-14.5695, -6.4169, -2.1054, 1.8830, 4.6720, 1.4840, 1.5587],
                 [25.7215, 3.4581, -1.3456, 1.6720, 4.4090, 1.5830, 1.5301]],
                dtype=torch.float32).cuda()),
        LiDARInstance3DBoxes(
            torch.tensor(
                [[-50.763, -3.5517, -0.99658, 1.7430, 4.4020, 1.6990, 1.7874],
                 [-68.720, 0.033, -0.75276, 1.7860, 4.9100, 1.6610, 1.7525]],
                dtype=torch.float32).cuda())
    ]
    gt_labels = list(torch.tensor([[4, 4], [4, 4]], dtype=torch.int64).cuda())
    input_metas = [{
        'sample_idx': 1234
    }, {
        'sample_idx': 2345
    }]  # fake input_metas

    losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
                       gt_labels, input_metas)

    assert losses['loss_cls'][0] > 0
    assert losses['loss_bbox'][0] > 0
    assert losses['loss_dir'][0] > 0

    # test empty ground truth case
    gt_bboxes = list(torch.empty((2, 0, 7)).cuda())
    gt_labels = list(torch.empty((2, 0)).cuda())
    empty_gt_losses = self.loss(cls_score, bbox_pred, dir_cls_preds, gt_bboxes,
                                gt_labels, input_metas)
    assert empty_gt_losses['loss_cls'][0] > 0
    assert empty_gt_losses['loss_bbox'][0] == 0
    assert empty_gt_losses['loss_dir'][0] == 0


def test_shape_aware_head_getboxes():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    bbox_head_cfg = _get_pts_bbox_head_cfg(
        'ssn/hv_ssn_secfpn_sbn-all_2x16_2x_lyft-3d.py')
    # modify bn config to avoid bugs caused by syncbn
    for task in bbox_head_cfg['tasks']:
        task['norm_cfg'] = dict(type='BN2d')

    from mmdet3d.models.builder import build_head
    self = build_head(bbox_head_cfg)
    self.cuda()

    feats = list()
    feats.append(torch.rand([2, 384, 200, 200], dtype=torch.float32).cuda())
    # fake input_metas
    input_metas = [{
        'sample_idx': 1234,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
    }, {
        'sample_idx': 2345,
        'box_type_3d': LiDARInstance3DBoxes,
        'box_mode_3d': Box3DMode.LIDAR
    }]
    (cls_score, bbox_pred, dir_cls_preds) = self.forward(feats)

    # test get_bboxes
    cls_score[0] -= 1.5  # too many positive samples may cause cuda oom
    result_list = self.get_bboxes(cls_score, bbox_pred, dir_cls_preds,
                                  input_metas)
    assert len(result_list[0][1]) > 0  # ensure not all boxes are filtered
    assert (result_list[0][1] > 0.3).all()
twang's avatar
twang committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187


def test_fcos_mono3d_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    fcos3d_head_cfg = _get_head_cfg(
        'fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py')
    self = build_head(fcos3d_head_cfg).cuda()

    feats = [
        torch.rand([2, 256, 116, 200], dtype=torch.float32).cuda(),
        torch.rand([2, 256, 58, 100], dtype=torch.float32).cuda(),
        torch.rand([2, 256, 29, 50], dtype=torch.float32).cuda(),
        torch.rand([2, 256, 15, 25], dtype=torch.float32).cuda(),
        torch.rand([2, 256, 8, 13], dtype=torch.float32).cuda()
    ]

    # test forward
    ret_dict = self(feats)
    assert len(ret_dict) == 5
    assert len(ret_dict[0]) == 5
    assert ret_dict[0][0].shape == torch.Size([2, 10, 116, 200])

    # test loss
    gt_bboxes = [
        torch.rand([3, 4], dtype=torch.float32).cuda(),
        torch.rand([3, 4], dtype=torch.float32).cuda()
    ]
    gt_bboxes_3d = CameraInstance3DBoxes(
        torch.rand([3, 9], device='cuda'), box_dim=9)
    gt_labels = [torch.randint(0, 10, [3], device='cuda') for i in range(2)]
    gt_labels_3d = gt_labels
    centers2d = [
        torch.rand([3, 2], dtype=torch.float32).cuda(),
        torch.rand([3, 2], dtype=torch.float32).cuda()
    ]
    depths = [
        torch.rand([3], dtype=torch.float32).cuda(),
        torch.rand([3], dtype=torch.float32).cuda()
    ]
    attr_labels = [torch.randint(0, 9, [3], device='cuda') for i in range(2)]
    img_metas = [
        dict(
1188
1189
1190
            cam2img=[[1260.8474446004698, 0.0, 807.968244525554],
                     [0.0, 1260.8474446004698, 495.3344268742088],
                     [0.0, 0.0, 1.0]],
twang's avatar
twang committed
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
            scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
            box_type_3d=CameraInstance3DBoxes) for i in range(2)
    ]
    losses = self.loss(*ret_dict, gt_bboxes, gt_labels, gt_bboxes_3d,
                       gt_labels_3d, centers2d, depths, attr_labels, img_metas)
    assert losses['loss_cls'] >= 0
    assert losses['loss_offset'] >= 0
    assert losses['loss_depth'] >= 0
    assert losses['loss_size'] >= 0
    assert losses['loss_rotsin'] >= 0
    assert losses['loss_centerness'] >= 0
    assert losses['loss_velo'] >= 0
    assert losses['loss_dir'] >= 0
    assert losses['loss_attr'] >= 0

    # test get_boxes
    results = self.get_bboxes(*ret_dict, img_metas)
    assert len(results) == 2
    assert len(results[0]) == 4
    assert results[0][0].tensor.shape == torch.Size([200, 9])
    assert results[0][1].shape == torch.Size([200])
    assert results[0][2].shape == torch.Size([200])
    assert results[0][3].shape == torch.Size([200])
hjin2902's avatar
hjin2902 committed
1214
1215
1216
1217
1218
1219
1220


def test_groupfree3d_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    vote_head_cfg = _get_vote_head_cfg(
1221
        'groupfree3d/groupfree3d_8x4_scannet-3d-18class-L6-O256.py')
hjin2902's avatar
hjin2902 committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
    self = build_head(vote_head_cfg).cuda()

    fp_xyz = [torch.rand([2, 256, 3], dtype=torch.float32).cuda()]
    fp_features = [torch.rand([2, 288, 256], dtype=torch.float32).cuda()]
    fp_indices = [torch.randint(0, 128, [2, 256]).cuda()]

    input_dict = dict(
        fp_xyz=fp_xyz, fp_features=fp_features, fp_indices=fp_indices)

    # test forward
    ret_dict = self(input_dict, 'kps')
    assert ret_dict['seeds_obj_cls_logits'].shape == torch.Size([2, 1, 256])
1234
1235
1236
1237
1238
1239
1240
    assert ret_dict['s5.center'].shape == torch.Size([2, 256, 3])
    assert ret_dict['s5.dir_class'].shape == torch.Size([2, 256, 1])
    assert ret_dict['s5.dir_res'].shape == torch.Size([2, 256, 1])
    assert ret_dict['s5.size_class'].shape == torch.Size([2, 256, 18])
    assert ret_dict['s5.size_res'].shape == torch.Size([2, 256, 18, 3])
    assert ret_dict['s5.obj_scores'].shape == torch.Size([2, 256, 1])
    assert ret_dict['s5.sem_scores'].shape == torch.Size([2, 256, 18])
hjin2902's avatar
hjin2902 committed
1241
1242

    # test losses
1243
    points = [torch.rand([5000, 4], device='cuda') for i in range(2)]
hjin2902's avatar
hjin2902 committed
1244
1245
1246
1247
1248
1249
1250
    gt_bbox1 = torch.rand([10, 7], dtype=torch.float32).cuda()
    gt_bbox2 = torch.rand([10, 7], dtype=torch.float32).cuda()

    gt_bbox1 = DepthInstance3DBoxes(gt_bbox1)
    gt_bbox2 = DepthInstance3DBoxes(gt_bbox2)
    gt_bboxes = [gt_bbox1, gt_bbox2]

1251
1252
    pts_instance_mask_1 = torch.randint(0, 10, [5000], device='cuda')
    pts_instance_mask_2 = torch.randint(0, 10, [5000], device='cuda')
hjin2902's avatar
hjin2902 committed
1253
1254
    pts_instance_mask = [pts_instance_mask_1, pts_instance_mask_2]

1255
1256
    pts_semantic_mask_1 = torch.randint(0, 19, [5000], device='cuda')
    pts_semantic_mask_2 = torch.randint(0, 19, [5000], device='cuda')
hjin2902's avatar
hjin2902 committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
    pts_semantic_mask = [pts_semantic_mask_1, pts_semantic_mask_2]

    labels_1 = torch.randint(0, 18, [10], device='cuda')
    labels_2 = torch.randint(0, 18, [10], device='cuda')
    gt_labels = [labels_1, labels_2]

    losses = self.loss(ret_dict, points, gt_bboxes, gt_labels,
                       pts_semantic_mask, pts_instance_mask)

    assert losses['s5.objectness_loss'] >= 0
    assert losses['s5.semantic_loss'] >= 0
    assert losses['s5.center_loss'] >= 0
    assert losses['s5.dir_class_loss'] >= 0
    assert losses['s5.dir_res_loss'] >= 0
    assert losses['s5.size_class_loss'] >= 0
    assert losses['s5.size_res_loss'] >= 0

    # test multiclass_nms_single
    obj_scores = torch.rand([256], device='cuda')
    sem_scores = torch.rand([256, 18], device='cuda')
1277
    points = torch.rand([5000, 3], device='cuda')
hjin2902's avatar
hjin2902 committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
    bbox = torch.rand([256, 7], device='cuda')
    input_meta = dict(box_type_3d=DepthInstance3DBoxes)
    bbox_selected, score_selected, labels = \
        self.multiclass_nms_single(obj_scores,
                                   sem_scores,
                                   bbox,
                                   points,
                                   input_meta)
    assert bbox_selected.shape[0] >= 0
    assert bbox_selected.shape[1] == 7
    assert score_selected.shape[0] >= 0
    assert labels.shape[0] >= 0

    # test get_boxes
1292
    points = torch.rand([1, 5000, 3], device='cuda')
hjin2902's avatar
hjin2902 committed
1293
    seed_points = torch.rand([1, 1024, 3], device='cuda')
1294
    seed_indices = torch.randint(0, 5000, [1, 1024], device='cuda')
hjin2902's avatar
hjin2902 committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    obj_scores = torch.rand([1, 256, 1], device='cuda')
    center = torch.rand([1, 256, 3], device='cuda')
    dir_class = torch.rand([1, 256, 1], device='cuda')
    dir_res_norm = torch.rand([1, 256, 1], device='cuda')
    dir_res = torch.rand([1, 256, 1], device='cuda')
    size_class = torch.rand([1, 256, 18], device='cuda')
    size_res = torch.rand([1, 256, 18, 3], device='cuda')
    sem_scores = torch.rand([1, 256, 18], device='cuda')
    bbox_preds = dict()
    bbox_preds['seed_points'] = seed_points
    bbox_preds['seed_indices'] = seed_indices
    bbox_preds['s5.obj_scores'] = obj_scores
    bbox_preds['s5.center'] = center
    bbox_preds['s5.dir_class'] = dir_class
    bbox_preds['s5.dir_res_norm'] = dir_res_norm
    bbox_preds['s5.dir_res'] = dir_res
    bbox_preds['s5.size_class'] = size_class
    bbox_preds['s5.size_res'] = size_res
    bbox_preds['s5.sem_scores'] = sem_scores

1315
    self.test_cfg['prediction_stages'] = 'last'
hjin2902's avatar
hjin2902 committed
1316
1317
1318
1319
1320
    results = self.get_bboxes(points, bbox_preds, [input_meta])
    assert results[0][0].tensor.shape[0] >= 0
    assert results[0][0].tensor.shape[1] == 7
    assert results[0][1].shape[0] >= 0
    assert results[0][2].shape[0] >= 0
Tai-Wang's avatar
Tai-Wang committed
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392


def test_pgd_head():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    pgd_head_cfg = _get_head_cfg(
        'pgd/pgd_r101_caffe_fpn_gn-head_3x4_4x_kitti-mono3d.py')
    self = build_head(pgd_head_cfg).cuda()

    feats = [
        torch.rand([2, 256, 96, 312], dtype=torch.float32).cuda(),
        torch.rand([2, 256, 48, 156], dtype=torch.float32).cuda(),
        torch.rand([2, 256, 24, 78], dtype=torch.float32).cuda(),
        torch.rand([2, 256, 12, 39], dtype=torch.float32).cuda(),
    ]

    # test forward
    ret_dict = self(feats)
    assert len(ret_dict) == 7
    assert len(ret_dict[0]) == 4
    assert ret_dict[0][0].shape == torch.Size([2, 3, 96, 312])

    # test loss
    gt_bboxes = [
        torch.rand([3, 4], dtype=torch.float32).cuda(),
        torch.rand([3, 4], dtype=torch.float32).cuda()
    ]
    gt_bboxes_3d = CameraInstance3DBoxes(
        torch.rand([3, 7], device='cuda'), box_dim=7)
    gt_labels = [torch.randint(0, 3, [3], device='cuda') for i in range(2)]
    gt_labels_3d = gt_labels
    centers2d = [
        torch.rand([3, 2], dtype=torch.float32).cuda(),
        torch.rand([3, 2], dtype=torch.float32).cuda()
    ]
    depths = [
        torch.rand([3], dtype=torch.float32).cuda(),
        torch.rand([3], dtype=torch.float32).cuda()
    ]
    attr_labels = None
    img_metas = [
        dict(
            img_shape=[384, 1248],
            cam2img=[[721.5377, 0.0, 609.5593, 44.85728],
                     [0.0, 721.5377, 172.854, 0.2163791],
                     [0.0, 0.0, 1.0, 0.002745884], [0.0, 0.0, 0.0, 1.0]],
            scale_factor=np.array([1., 1., 1., 1.], dtype=np.float32),
            box_type_3d=CameraInstance3DBoxes) for i in range(2)
    ]
    losses = self.loss(*ret_dict, gt_bboxes, gt_labels, gt_bboxes_3d,
                       gt_labels_3d, centers2d, depths, attr_labels, img_metas)
    assert losses['loss_cls'] >= 0
    assert losses['loss_offset'] >= 0
    assert losses['loss_depth'] >= 0
    assert losses['loss_size'] >= 0
    assert losses['loss_rotsin'] >= 0
    assert losses['loss_centerness'] >= 0
    assert losses['loss_kpts'] >= 0
    assert losses['loss_bbox2d'] >= 0
    assert losses['loss_consistency'] >= 0
    assert losses['loss_dir'] >= 0

    # test get_boxes
    results = self.get_bboxes(*ret_dict, img_metas)
    assert len(results) == 2
    assert len(results[0]) == 5
    assert results[0][0].tensor.shape == torch.Size([20, 7])
    assert results[0][1].shape == torch.Size([20])
    assert results[0][2].shape == torch.Size([20])
    assert results[0][3] is None
    assert results[0][4].shape == torch.Size([20, 5])