getting_started.md 11.8 KB
Newer Older
twang's avatar
twang committed
1
# Prerequisites
zhangwenwei's avatar
zhangwenwei committed
2

twang's avatar
twang committed
3
4
5
6
7
- Linux or macOS (Windows is not currently officially supported)
- Python 3.6+
- PyTorch 1.3+
- CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
- GCC 5+
xiliu8006's avatar
xiliu8006 committed
8
9
10
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)


11
12
13
14
The required versions of MMCV, MMDetection and MMSegmentation for different versions of MMDetection3D are as below. Please install the correct version of MMCV, MMDetection and MMSegmentation to avoid installation issues.

| MMDetection3D version | MMDetection version | MMSegmentation version |    MMCV version     |
|:-------------------:|:-------------------:|:-------------------:|:-------------------:|
15
16
17
18
| master              | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.17, <=1.5.0|
| v1.0.0rc0           | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.17, <=1.5.0|
| 0.18.1              | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.17, <=1.5.0|
| 0.18.0              | mmdet>=2.19.0, <=3.0.0| mmseg>=0.20.0, <=1.0.0 | mmcv-full>=1.3.17, <=1.5.0|
Wenhao Wu's avatar
Wenhao Wu committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
| 0.17.3              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.2              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.1              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.17.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.16.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.15.0              | mmdet>=2.14.0, <=3.0.0| mmseg>=0.14.1, <=1.0.0 | mmcv-full>=1.3.8, <=1.4.0|
| 0.14.0              | mmdet>=2.10.0, <=2.11.0| mmseg==0.14.0 | mmcv-full>=1.3.1, <=1.4.0|
| 0.13.0              | mmdet>=2.10.0, <=2.11.0| Not required  | mmcv-full>=1.2.4, <=1.4.0|
| 0.12.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.4.0|
| 0.11.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.10.0              | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.9.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.2.4, <=1.3.0|
| 0.8.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.3.0|
| 0.7.0               | mmdet>=2.5.0, <=2.11.0 | Not required  | mmcv-full>=1.1.5, <=1.3.0|
Tai-Wang's avatar
Tai-Wang committed
33
| 0.6.0               | mmdet>=2.4.0, <=2.11.0 | Not required  | mmcv-full>=1.1.3, <=1.2.0|
34
| 0.5.0               | 2.3.0                  | Not required  | mmcv-full==1.0.5|
zhangwenwei's avatar
Doc  
zhangwenwei committed
35

twang's avatar
twang committed
36
# Installation
zhangwenwei's avatar
Doc  
zhangwenwei committed
37

twang's avatar
twang committed
38
## Install MMDetection3D
zhangwenwei's avatar
Doc  
zhangwenwei committed
39

40
**a. Create a conda virtual environment and activate it.**
zhangwenwei's avatar
zhangwenwei committed
41

twang's avatar
twang committed
42
43
44
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
zhangwenwei's avatar
Doc  
zhangwenwei committed
45
46
```

47
**b. Install PyTorch and torchvision following the [official instructions](https://pytorch.org/).**
Wenwei Zhang's avatar
Wenwei Zhang committed
48

twang's avatar
twang committed
49
50
```shell
conda install pytorch torchvision -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
51
52
```

twang's avatar
twang committed
53
54
Note: Make sure that your compilation CUDA version and runtime CUDA version match.
You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
Wenwei Zhang's avatar
Wenwei Zhang committed
55

56
`E.g. 1` If you have CUDA 10.1 installed under `/usr/local/cuda` and would like to install
twang's avatar
twang committed
57
PyTorch 1.5, you need to install the prebuilt PyTorch with CUDA 10.1.
Wenwei Zhang's avatar
Wenwei Zhang committed
58

twang's avatar
twang committed
59
```python
60
conda install pytorch==1.5.0 cudatoolkit=10.1 torchvision==0.6.0 -c pytorch
Wenwei Zhang's avatar
Wenwei Zhang committed
61
62
```

twang's avatar
twang committed
63
64
`E.g. 2` If you have CUDA 9.2 installed under `/usr/local/cuda` and would like to install
PyTorch 1.3.1., you need to install the prebuilt PyTorch with CUDA 9.2.
zhangwenwei's avatar
zhangwenwei committed
65

twang's avatar
twang committed
66
67
```python
conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch
wangtai's avatar
wangtai committed
68
69
```

70
If you build PyTorch from source instead of installing the prebuilt package,
twang's avatar
twang committed
71
you can use more CUDA versions such as 9.0.
72

73
**c. Install [MMCV](https://mmcv.readthedocs.io/en/latest/).**
xiliu8006's avatar
xiliu8006 committed
74
*mmcv-full* is necessary since MMDetection3D relies on MMDetection, CUDA ops in *mmcv-full* are required.
zhangwenwei's avatar
Doc  
zhangwenwei committed
75

76
`e.g.` The pre-build *mmcv-full* could be installed by running: (available versions could be found [here](https://mmcv.readthedocs.io/en/latest/#install-with-pip))
zhangwenwei's avatar
zhangwenwei committed
77

Ziyi Wu's avatar
Ziyi Wu committed
78
```shell
xiliu8006's avatar
xiliu8006 committed
79
80
81
82
83
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
```

Please replace `{cu_version}` and `{torch_version}` in the url to your desired one. For example, to install the latest `mmcv-full` with `CUDA 11` and `PyTorch 1.7.0`, use the following command:

twang's avatar
twang committed
84
```shell
xiliu8006's avatar
xiliu8006 committed
85
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
twang's avatar
twang committed
86
```
zhangwenwei's avatar
zhangwenwei committed
87

88
89
90
91
92
93
94
mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.

```shell
# We can ignore the micro version of PyTorch
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7/index.html
```

xiliu8006's avatar
xiliu8006 committed
95
See [here](https://github.com/open-mmlab/mmcv#install-with-pip) for different versions of MMCV compatible to different PyTorch and CUDA versions.
twang's avatar
twang committed
96
Optionally, you could also build the full version from source:
zhangwenwei's avatar
zhangwenwei committed
97

twang's avatar
twang committed
98
```shell
xiliu8006's avatar
xiliu8006 committed
99
100
101
102
103
104
105
106
107
108
git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
MMCV_WITH_OPS=1 pip install -e .  # package mmcv-full will be installed after this step
cd ..
```

Or directly run

```shell
pip install mmcv-full
twang's avatar
twang committed
109
```
zhangwenwei's avatar
zhangwenwei committed
110

111
**d. Install [MMDetection](https://github.com/open-mmlab/mmdetection).**
zhangwenwei's avatar
zhangwenwei committed
112

twang's avatar
twang committed
113
```shell
114
pip install mmdet
twang's avatar
twang committed
115
```
zhangwenwei's avatar
zhangwenwei committed
116

twang's avatar
twang committed
117
Optionally, you could also build MMDetection from source in case you want to modify the code:
zhangwenwei's avatar
zhangwenwei committed
118
119

```shell
twang's avatar
twang committed
120
121
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
122
git checkout v2.19.0  # switch to v2.19.0 branch
twang's avatar
twang committed
123
124
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
zhangwenwei's avatar
zhangwenwei committed
125
126
```

127
128
129
**e. Install [MMSegmentation](https://github.com/open-mmlab/mmsegmentation).**

```shell
130
pip install mmsegmentation
131
132
133
134
135
136
137
```

Optionally, you could also build MMSegmentation from source in case you want to modify the code:

```shell
git clone https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
138
git checkout v0.20.0  # switch to v0.20.0 branch
139
140
141
142
pip install -e .  # or "python setup.py develop"
```

**f. Clone the MMDetection3D repository.**
zhangwenwei's avatar
Doc  
zhangwenwei committed
143

twang's avatar
twang committed
144
145
146
147
```shell
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
```
zhangwenwei's avatar
zhangwenwei committed
148

149
**g.Install build requirements and then install MMDetection3D.**
zhangwenwei's avatar
zhangwenwei committed
150

twang's avatar
twang committed
151
152
153
```shell
pip install -v -e .  # or "python setup.py develop"
```
zhangwenwei's avatar
zhangwenwei committed
154

twang's avatar
twang committed
155
Note:
zhangwenwei's avatar
Doc  
zhangwenwei committed
156

twang's avatar
twang committed
157
158
1. The git commit id will be written to the version number with step d, e.g. 0.6.0+2e7045c. The version will also be saved in trained models.
It is recommended that you run step d each time you pull some updates from github. If C++/CUDA codes are modified, then this step is compulsory.
zhangwenwei's avatar
Doc  
zhangwenwei committed
159

twang's avatar
twang committed
160
    > Important: Be sure to remove the `./build` folder if you reinstall mmdet with a different CUDA/PyTorch version.
zhangwenwei's avatar
zhangwenwei committed
161

twang's avatar
twang committed
162
163
164
165
166
    ```shell
    pip uninstall mmdet3d
    rm -rf ./build
    find . -name "*.so" | xargs rm
    ```
zhangwenwei's avatar
zhangwenwei committed
167

168
2. Following the above instructions, MMDetection3D is installed on `dev` mode, any local modifications made to the code will take effect without the need to reinstall it (unless you submit some commits and want to update the version number).
zhangwenwei's avatar
zhangwenwei committed
169

twang's avatar
twang committed
170
171
3. If you would like to use `opencv-python-headless` instead of `opencv-python`,
you can install it before installing MMCV.
zhangwenwei's avatar
zhangwenwei committed
172

twang's avatar
twang committed
173
4. Some dependencies are optional. Simply running `pip install -v -e .` will only install the minimum runtime requirements. To use optional dependencies like `albumentations` and `imagecorruptions` either install them manually with `pip install -r requirements/optional.txt` or specify desired extras when calling `pip` (e.g. `pip install -v -e .[optional]`). Valid keys for the extras field are: `all`, `tests`, `build`, and `optional`.
zhangwenwei's avatar
zhangwenwei committed
174

twang's avatar
twang committed
175
5. The code can not be built for CPU only environment (where CUDA isn't available) for now.
zhangwenwei's avatar
zhangwenwei committed
176

twang's avatar
twang committed
177
## Another option: Docker Image
Wenwei Zhang's avatar
Wenwei Zhang committed
178

twang's avatar
twang committed
179
We provide a [Dockerfile](https://github.com/open-mmlab/mmdetection3d/blob/master/docker/Dockerfile) to build an image.
Wenwei Zhang's avatar
Wenwei Zhang committed
180

twang's avatar
twang committed
181
182
```shell
# build an image with PyTorch 1.6, CUDA 10.1
183
docker build -t mmdetection3d -f docker/Dockerfile .
twang's avatar
twang committed
184
```
Wenwei Zhang's avatar
Wenwei Zhang committed
185

twang's avatar
twang committed
186
Run it with
Wenwei Zhang's avatar
Wenwei Zhang committed
187

twang's avatar
twang committed
188
189
190
```shell
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d
```
Wenwei Zhang's avatar
Wenwei Zhang committed
191

twang's avatar
twang committed
192
## A from-scratch setup script
Wenwei Zhang's avatar
Wenwei Zhang committed
193

194
Here is a full script for setting up MMdetection3D with conda.
Wenwei Zhang's avatar
Wenwei Zhang committed
195

twang's avatar
twang committed
196
197
198
```shell
conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab
Wenwei Zhang's avatar
Wenwei Zhang committed
199

200
# install latest PyTorch prebuilt with the default prebuilt CUDA version (usually the latest)
twang's avatar
twang committed
201
conda install -c pytorch pytorch torchvision -y
Wenwei Zhang's avatar
Wenwei Zhang committed
202

twang's avatar
twang committed
203
204
# install mmcv
pip install mmcv-full
liyinhao's avatar
liyinhao committed
205

twang's avatar
twang committed
206
207
# install mmdetection
pip install git+https://github.com/open-mmlab/mmdetection.git
liyinhao's avatar
liyinhao committed
208

209
210
211
# install mmsegmentation
pip install git+https://github.com/open-mmlab/mmsegmentation.git

twang's avatar
twang committed
212
213
214
215
# install mmdetection3d
git clone https://github.com/open-mmlab/mmdetection3d.git
cd mmdetection3d
pip install -v -e .
zhangwenwei's avatar
zhangwenwei committed
216
```
liyinhao's avatar
liyinhao committed
217

twang's avatar
twang committed
218
219
220
## Using multiple MMDetection3D versions

The train and test scripts already modify the `PYTHONPATH` to ensure the script use the MMDetection3D in the current directory.
liyinhao's avatar
liyinhao committed
221

twang's avatar
twang committed
222
223
224
225
To use the default MMDetection3D installed in the environment rather than that you are working with, you can remove the following line in those scripts

```shell
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH
liyinhao's avatar
liyinhao committed
226
227
```

twang's avatar
twang committed
228
# Verification
liyinhao's avatar
liyinhao committed
229

230
## Verify with point cloud demo
zhangwenwei's avatar
Doc  
zhangwenwei committed
231

232
We provide several demo scripts to test a single sample. Pre-trained models can be downloaded from [model zoo](model_zoo.md). To test a single-modality 3D detection on point cloud scenes:
zhangwenwei's avatar
Doc  
zhangwenwei committed
233
234

```shell
wuyuefeng's avatar
Demo  
wuyuefeng committed
235
python demo/pcd_demo.py ${PCD_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--score-thr ${SCORE_THR}] [--out-dir ${OUT_DIR}]
zhangwenwei's avatar
Doc  
zhangwenwei committed
236
237
238
239
240
```

Examples:

```shell
241
python demo/pcd_demo.py demo/data/kitti/kitti_000008.bin configs/second/hv_second_secfpn_6x8_80e_kitti-3d-car.py checkpoints/hv_second_secfpn_6x8_80e_kitti-3d-car_20200620_230238-393f000c.pth
zhangwenwei's avatar
zhangwenwei committed
242
```
243

yinchimaoliang's avatar
yinchimaoliang committed
244
If you want to input a `ply` file, you can use the following function and convert it to `bin` format. Then you can use the converted `bin` file to generate demo.
245
Note that you need to install `pandas` and `plyfile` before using this script. This function can also be used for data preprocessing for training ```ply data```.
246

yinchimaoliang's avatar
yinchimaoliang committed
247
248
249
250
251
```python
import numpy as np
import pandas as pd
from plyfile import PlyData

252
def convert_ply(input_path, output_path):
yinchimaoliang's avatar
yinchimaoliang committed
253
254
255
256
257
258
259
260
261
262
    plydata = PlyData.read(input_path)  # read file
    data = plydata.elements[0].data  # read data
    data_pd = pd.DataFrame(data)  # convert to DataFrame
    data_np = np.zeros(data_pd.shape, dtype=np.float)  # initialize array to store data
    property_names = data[0].dtype.names  # read names of properties
    for i, name in enumerate(
            property_names):  # read data by property
        data_np[:, i] = data_pd[name]
    data_np.astype(np.float32).tofile(output_path)
```
263

yinchimaoliang's avatar
yinchimaoliang committed
264
Examples:
zhangwenwei's avatar
zhangwenwei committed
265

yinchimaoliang's avatar
yinchimaoliang committed
266
267
268
```python
convert_ply('./test.ply', './test.bin')
```
zhangwenwei's avatar
zhangwenwei committed
269

270
If you have point clouds in other format (`off`, `obj`, etc.), you can use `trimesh` to convert them into `ply`.
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

```python
import trimesh

def to_ply(input_path, output_path, original_type):
    mesh = trimesh.load(input_path, file_type=original_type)  # read file
    mesh.export(output_path, file_type='ply')  # convert to ply
```

Examples:

```python
to_ply('./test.obj', './test.ply', 'obj')
```

286
More demos about single/multi-modality and indoor/outdoor 3D detection can be found in [demo](demo.md).
287

twang's avatar
twang committed
288
## High-level APIs for testing point clouds
zhangwenwei's avatar
zhangwenwei committed
289

twang's avatar
twang committed
290
### Synchronous interface
Ziyi Wu's avatar
Ziyi Wu committed
291

liyinhao's avatar
liyinhao committed
292
Here is an example of building the model and test given point clouds.
zhangwenwei's avatar
zhangwenwei committed
293
294

```python
295
from mmdet3d.apis import init_model, inference_detector
zhangwenwei's avatar
zhangwenwei committed
296

liyinhao's avatar
liyinhao committed
297
298
config_file = 'configs/votenet/votenet_8x8_scannet-3d-18class.py'
checkpoint_file = 'checkpoints/votenet_8x8_scannet-3d-18class_20200620_230238-2cea9c3a.pth'
zhangwenwei's avatar
zhangwenwei committed
299
300

# build the model from a config file and a checkpoint file
301
model = init_model(config_file, checkpoint_file, device='cuda:0')
zhangwenwei's avatar
zhangwenwei committed
302
303

# test a single image and show the results
liyinhao's avatar
liyinhao committed
304
305
306
307
point_cloud = 'test.bin'
result, data = inference_detector(model, point_cloud)
# visualize the results and save the results in 'results' folder
model.show_results(data, result, out_dir='results')
zhangwenwei's avatar
zhangwenwei committed
308
```