scannet_data_utils.py 9.59 KB
Newer Older
1
import mmcv
2
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
4
from concurrent import futures as futures
from os import path as osp
5
6


liyinhao's avatar
liyinhao committed
7
class ScanNetData(object):
liyinhao's avatar
liyinhao committed
8
    """ScanNet data.
liyinhao's avatar
liyinhao committed
9

liyinhao's avatar
liyinhao committed
10
    Generate scannet infos for scannet_converter.
liyinhao's avatar
liyinhao committed
11
12

    Args:
liyinhao's avatar
liyinhao committed
13
        root_path (str): Root path of the raw data.
liyinhao's avatar
liyinhao committed
14
        split (str): Set split type of the data. Default: 'train'.
liyinhao's avatar
liyinhao committed
15
    """
16
17
18
19

    def __init__(self, root_path, split='train'):
        self.root_dir = root_path
        self.split = split
liyinhao's avatar
liyinhao committed
20
        self.split_dir = osp.join(root_path)
21
22
23
24
25
26
27
28
29
        self.classes = [
            'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
            'bookshelf', 'picture', 'counter', 'desk', 'curtain',
            'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
            'garbagebin'
        ]
        self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
        self.label2cat = {self.cat2label[t]: t for t in self.cat2label}
        self.cat_ids = np.array(
30
            [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39])
31
        self.cat_ids2class = {
32
            nyu40id: i
33
            for i, nyu40id in enumerate(list(self.cat_ids))
34
35
        }
        assert split in ['train', 'val', 'test']
liyinhao's avatar
liyinhao committed
36
37
        split_file = osp.join(self.root_dir, 'meta_data',
                              f'scannetv2_{split}.txt')
38
39
        mmcv.check_file_exist(split_file)
        self.sample_id_list = mmcv.list_from_file(split_file)
40
        self.test_mode = (split == 'test')
41
42
43
44
45

    def __len__(self):
        return len(self.sample_id_list)

    def get_box_label(self, idx):
46
        box_file = osp.join(self.root_dir, 'scannet_instance_data',
liyinhao's avatar
liyinhao committed
47
48
                            f'{idx}_bbox.npy')
        mmcv.check_file_exist(box_file)
49
50
        return np.load(box_file)

liyinhao's avatar
liyinhao committed
51
    def get_infos(self, num_workers=4, has_label=True, sample_id_list=None):
liyinhao's avatar
liyinhao committed
52
        """Get data infos.
liyinhao's avatar
liyinhao committed
53
54
55
56
57
58

        This method gets information from the raw data.

        Args:
            num_workers (int): Number of threads to be used. Default: 4.
            has_label (bool): Whether the data has label. Default: True.
liyinhao's avatar
liyinhao committed
59
            sample_id_list (list[int]): Index list of the sample.
liyinhao's avatar
liyinhao committed
60
                Default: None.
liyinhao's avatar
liyinhao committed
61
62

        Returns:
liyinhao's avatar
liyinhao committed
63
            infos (list[dict]): Information of the raw data.
liyinhao's avatar
liyinhao committed
64
        """
65
66

        def process_single_scene(sample_idx):
liyinhao's avatar
liyinhao committed
67
            print(f'{self.split} sample_idx: {sample_idx}')
68
69
70
            info = dict()
            pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
            info['point_cloud'] = pc_info
71
            pts_filename = osp.join(self.root_dir, 'scannet_instance_data',
liyinhao's avatar
liyinhao committed
72
73
74
75
76
77
                                    f'{sample_idx}_vert.npy')
            points = np.load(pts_filename)
            mmcv.mkdir_or_exist(osp.join(self.root_dir, 'points'))
            points.tofile(
                osp.join(self.root_dir, 'points', f'{sample_idx}.bin'))
            info['pts_path'] = osp.join('points', f'{sample_idx}.bin')
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

            if not self.test_mode:
                pts_instance_mask_path = osp.join(
                    self.root_dir, 'scannet_instance_data',
                    f'{sample_idx}_ins_label.npy')
                pts_semantic_mask_path = osp.join(
                    self.root_dir, 'scannet_instance_data',
                    f'{sample_idx}_sem_label.npy')

                pts_instance_mask = np.load(pts_instance_mask_path).astype(
                    np.long)
                pts_semantic_mask = np.load(pts_semantic_mask_path).astype(
                    np.long)

                mmcv.mkdir_or_exist(osp.join(self.root_dir, 'instance_mask'))
                mmcv.mkdir_or_exist(osp.join(self.root_dir, 'semantic_mask'))

                pts_instance_mask.tofile(
                    osp.join(self.root_dir, 'instance_mask',
                             f'{sample_idx}.bin'))
                pts_semantic_mask.tofile(
                    osp.join(self.root_dir, 'semantic_mask',
                             f'{sample_idx}.bin'))

                info['pts_instance_mask_path'] = osp.join(
                    'instance_mask', f'{sample_idx}.bin')
                info['pts_semantic_mask_path'] = osp.join(
                    'semantic_mask', f'{sample_idx}.bin')
106
107
108
109
110
111
112
113
114
115

            if has_label:
                annotations = {}
                boxes_with_classes = self.get_box_label(
                    sample_idx)  # k, 6 + class
                annotations['gt_num'] = boxes_with_classes.shape[0]
                if annotations['gt_num'] != 0:
                    minmax_boxes3d = boxes_with_classes[:, :-1]  # k, 6
                    classes = boxes_with_classes[:, -1]  # k, 1
                    annotations['name'] = np.array([
116
                        self.label2cat[self.cat_ids2class[classes[i]]]
117
118
119
120
121
122
123
124
                        for i in range(annotations['gt_num'])
                    ])
                    annotations['location'] = minmax_boxes3d[:, :3]
                    annotations['dimensions'] = minmax_boxes3d[:, 3:6]
                    annotations['gt_boxes_upright_depth'] = minmax_boxes3d
                    annotations['index'] = np.arange(
                        annotations['gt_num'], dtype=np.int32)
                    annotations['class'] = np.array([
125
                        self.cat_ids2class[classes[i]]
126
127
128
129
130
131
132
133
134
135
                        for i in range(annotations['gt_num'])
                    ])
                info['annos'] = annotations
            return info

        sample_id_list = sample_id_list if sample_id_list is not None \
            else self.sample_id_list
        with futures.ThreadPoolExecutor(num_workers) as executor:
            infos = executor.map(process_single_scene, sample_id_list)
        return list(infos)
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158


class ScanNetSegData(object):
    """ScanNet dataset used to generate infos for semantic segmentation task.

    Args:
        data_root (str): Root path of the raw data.
        ann_file (str): The generated scannet infos.
        split (str): Set split type of the data. Default: 'train'.
        num_points (int): Number of points in each data input. Default: 8192.
        label_weight_func (function): Function to compute the label weight.
            Default: None.
    """

    def __init__(self,
                 data_root,
                 ann_file,
                 split='train',
                 num_points=8192,
                 label_weight_func=None):
        self.data_root = data_root
        self.data_infos = mmcv.load(ann_file)
        self.split = split
159
        assert split in ['train', 'val', 'test']
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        self.num_points = num_points

        self.all_ids = np.arange(41)  # all possible ids
        self.cat_ids = np.array([
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36,
            39
        ])  # used for seg task
        self.ignore_index = len(self.cat_ids)

        self.cat_id2class = np.ones((self.all_ids.shape[0],), dtype=np.int) * \
            self.ignore_index
        for i, cat_id in enumerate(self.cat_ids):
            self.cat_id2class[cat_id] = i

        # label weighting function is taken from
        # https://github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py#L24
        self.label_weight_func = (lambda x: 1.0 / np.log(1.2 + x)) if \
            label_weight_func is None else label_weight_func

    def get_seg_infos(self):
180
181
        if self.split == 'test':
            return
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        scene_idxs, label_weight = self.get_scene_idxs_and_label_weight()
        save_folder = osp.join(self.data_root, 'seg_info')
        mmcv.mkdir_or_exist(save_folder)
        np.save(
            osp.join(save_folder, f'{self.split}_resampled_scene_idxs.npy'),
            scene_idxs)
        np.save(
            osp.join(save_folder, f'{self.split}_label_weight.npy'),
            label_weight)
        print(f'{self.split} resampled scene index and label weight saved')

    def _convert_to_label(self, mask):
        """Convert class_id in loaded segmentation mask to label."""
        if isinstance(mask, str):
            if mask.endswith('npy'):
                mask = np.load(mask)
            else:
                mask = np.fromfile(mask, dtype=np.long)
        # first filter out unannotated points (labeled as 0)
        mask = mask[mask != 0]
        # then convert to [0, 20) labels
        label = self.cat_id2class[mask]
        return label

    def get_scene_idxs_and_label_weight(self):
        """Compute scene_idxs for data sampling and label weight for loss \
        calculation.

        We sample more times for scenes with more points. Label_weight is
        inversely proportional to number of class points.
        """
        num_classes = len(self.cat_ids)
        num_point_all = []
        label_weight = np.zeros((num_classes + 1, ))  # ignore_index
        for data_info in self.data_infos:
            label = self._convert_to_label(
                osp.join(self.data_root, data_info['pts_semantic_mask_path']))
            num_point_all.append(label.shape[0])
            class_count, _ = np.histogram(label, range(num_classes + 2))
            label_weight += class_count

        # repeat scene_idx for num_scene_point // num_sample_point times
        sample_prob = np.array(num_point_all) / float(np.sum(num_point_all))
        num_iter = int(np.sum(num_point_all) / float(self.num_points))
        scene_idxs = []
        for idx in range(len(self.data_infos)):
            scene_idxs.extend([idx] * round(sample_prob[idx] * num_iter))
        scene_idxs = np.array(scene_idxs).astype(np.int32)

        # calculate label weight, adopted from PointNet++
        label_weight = label_weight[:-1].astype(np.float32)
        label_weight = label_weight / label_weight.sum()
        label_weight = self.label_weight_func(label_weight).astype(np.float32)

        return scene_idxs, label_weight