scannet_dataset.py 4.44 KB
Newer Older
1
2
3
4
import os.path as osp

import numpy as np

liyinhao's avatar
liyinhao committed
5
from mmdet3d.core import show_result
wuyuefeng's avatar
wuyuefeng committed
6
from mmdet3d.core.bbox import DepthInstance3DBoxes
7
from mmdet.datasets import DATASETS
zhangwenwei's avatar
zhangwenwei committed
8
from .custom_3d import Custom3DDataset
9
10
11


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
class ScanNetDataset(Custom3DDataset):
wangtai's avatar
wangtai committed
13
    """ScanNet Dataset
14

wangtai's avatar
wangtai committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    This class serves as the API for experiments on the ScanNet Dataset.

    Please refer to `<https://github.com/ScanNet/ScanNet>`_for data
    downloading. It is recommended to symlink the dataset root to
    $MMDETECTION3D/data and organize them as the doc shows.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'Depth' in this dataset. Available options includes

            - 'LiDAR': box in LiDAR coordinates
            - 'Depth': box in depth coordinates, usually for indoor dataset
            - 'Camera': box in camera coordinates
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
43
44
45
46
47
48
    CLASSES = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
49
                 data_root,
50
51
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
52
                 classes=None,
liyinhao's avatar
liyinhao committed
53
                 modality=None,
54
                 box_type_3d='Depth',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
55
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
56
                 test_mode=False):
57
58
59
60
61
62
63
64
65
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)
66

liyinhao's avatar
liyinhao committed
67
    def get_ann_info(self, index):
68
        # Use index to get the annos, thus the evalhook could also use this api
liyinhao's avatar
liyinhao committed
69
        info = self.data_infos[index]
70
        if info['annos']['gt_num'] != 0:
liyinhao's avatar
liyinhao committed
71
72
73
            gt_bboxes_3d = info['annos']['gt_boxes_upright_depth'].astype(
                np.float32)  # k, 6
            gt_labels_3d = info['annos']['class'].astype(np.long)
74
        else:
liyinhao's avatar
liyinhao committed
75
            gt_bboxes_3d = np.zeros((0, 6), dtype=np.float32)
liyinhao's avatar
liyinhao committed
76
            gt_labels_3d = np.zeros((0, ), dtype=np.long)
wuyuefeng's avatar
wuyuefeng committed
77
78
79
80
81
82
83
84

        # to target box structure
        gt_bboxes_3d = DepthInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            with_yaw=False,
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

zhangwenwei's avatar
zhangwenwei committed
85
        pts_instance_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
86
                                          info['pts_instance_mask_path'])
zhangwenwei's avatar
zhangwenwei committed
87
        pts_semantic_mask_path = osp.join(self.data_root,
liyinhao's avatar
liyinhao committed
88
                                          info['pts_semantic_mask_path'])
89
90
91

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
92
            gt_labels_3d=gt_labels_3d,
93
94
95
            pts_instance_mask_path=pts_instance_mask_path,
            pts_semantic_mask_path=pts_semantic_mask_path)
        return anns_results
liyinhao's avatar
liyinhao committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

    def show(self, results, out_dir):
        assert out_dir is not None, 'Expect out_dir, got none.'
        for i, result in enumerate(results):
            data_info = self.data_infos[i]
            pts_path = data_info['pts_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
            points = np.fromfile(
                osp.join(self.data_root, pts_path),
                dtype=np.float32).reshape(-1, 6)
            gt_bboxes = np.pad(data_info['annos']['gt_boxes_upright_depth'],
                               ((0, 0), (0, 1)), 'constant')
            pred_bboxes = result['boxes_3d'].tensor.numpy()
            pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2
            show_result(points, gt_bboxes, pred_bboxes, out_dir, file_name)