test_sparse_unet.py 4.11 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
import torch

wuyuefeng's avatar
wuyuefeng committed
3
4
5
import mmdet3d.ops.spconv as spconv
from mmdet3d.ops import SparseBasicBlock, SparseBasicBlockV0

wuyuefeng's avatar
wuyuefeng committed
6

wuyuefeng's avatar
wuyuefeng committed
7
8
9
def test_SparseUNet():
    from mmdet3d.models.middle_encoders.sparse_unet import SparseUNet
    self = SparseUNet(
wuyuefeng's avatar
wuyuefeng committed
10
        in_channels=4, output_shape=[41, 1600, 1408], pre_act=False)
wuyuefeng's avatar
wuyuefeng committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

    # test encoder layers
    assert len(self.encoder_layers) == 4
    assert self.encoder_layers.encoder_layer1[0][0].in_channels == 16
    assert self.encoder_layers.encoder_layer1[0][0].out_channels == 16
    assert isinstance(self.encoder_layers.encoder_layer1[0][0],
                      spconv.conv.SubMConv3d)
    assert isinstance(self.encoder_layers.encoder_layer1[0][1],
                      torch.nn.modules.batchnorm.BatchNorm1d)
    assert isinstance(self.encoder_layers.encoder_layer1[0][2],
                      torch.nn.modules.activation.ReLU)
    assert self.encoder_layers.encoder_layer4[0][0].in_channels == 64
    assert self.encoder_layers.encoder_layer4[0][0].out_channels == 64
    assert isinstance(self.encoder_layers.encoder_layer4[0][0],
                      spconv.conv.SparseConv3d)
    assert isinstance(self.encoder_layers.encoder_layer4[2][0],
                      spconv.conv.SubMConv3d)

    # test decoder layers
    assert isinstance(self.lateral_layer1, SparseBasicBlock)
    assert isinstance(self.merge_layer1[0], spconv.conv.SubMConv3d)
    assert isinstance(self.upsample_layer1[0], spconv.conv.SubMConv3d)
    assert isinstance(self.upsample_layer2[0], spconv.conv.SparseInverseConv3d)

wuyuefeng's avatar
wuyuefeng committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    voxel_features = torch.tensor([[6.56126, 0.9648336, -1.7339306, 0.315],
                                   [6.8162713, -2.480431, -1.3616394, 0.36],
                                   [11.643568, -4.744306, -1.3580885, 0.16],
                                   [23.482342, 6.5036807, 0.5806964, 0.35]],
                                  dtype=torch.float32)  # n, point_features
    coordinates = torch.tensor(
        [[0, 12, 819, 131], [0, 16, 750, 136], [1, 16, 705, 232],
         [1, 35, 930, 469]],
        dtype=torch.int32)  # n, 4(batch, ind_x, ind_y, ind_z)

    unet_ret_dict = self.forward(voxel_features, coordinates, 2)
    seg_features = unet_ret_dict['seg_features']
    spatial_features = unet_ret_dict['spatial_features']

    assert seg_features.shape == torch.Size([4, 16])
    assert spatial_features.shape == torch.Size([2, 256, 200, 176])


wuyuefeng's avatar
wuyuefeng committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
def test_SparseBasicBlock():
    voxel_features = torch.tensor([[6.56126, 0.9648336, -1.7339306, 0.315],
                                   [6.8162713, -2.480431, -1.3616394, 0.36],
                                   [11.643568, -4.744306, -1.3580885, 0.16],
                                   [23.482342, 6.5036807, 0.5806964, 0.35]],
                                  dtype=torch.float32)  # n, point_features
    coordinates = torch.tensor(
        [[0, 12, 819, 131], [0, 16, 750, 136], [1, 16, 705, 232],
         [1, 35, 930, 469]],
        dtype=torch.int32)  # n, 4(batch, ind_x, ind_y, ind_z)

    # test v0
    self = SparseBasicBlockV0(
        4,
        4,
        indice_key='subm0',
        norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01))
    input_sp_tensor = spconv.SparseConvTensor(voxel_features, coordinates,
                                              [41, 1600, 1408], 2)
    out_features = self(input_sp_tensor)
    assert out_features.features.shape == torch.Size([4, 4])

    # test
    input_sp_tensor = spconv.SparseConvTensor(voxel_features, coordinates,
                                              [41, 1600, 1408], 2)
    self = SparseBasicBlock(
        4,
        4,
        conv_cfg=dict(type='SubMConv3d', indice_key='subm1'),
        norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01))
wuyuefeng's avatar
wuyuefeng committed
83
84
85
86
87
88
89
90
91
92
    # test conv and bn layer
    assert isinstance(self.conv1, spconv.conv.SubMConv3d)
    assert self.conv1.in_channels == 4
    assert self.conv1.out_channels == 4
    assert isinstance(self.conv2, spconv.conv.SubMConv3d)
    assert self.conv2.out_channels == 4
    assert self.conv2.out_channels == 4
    assert self.bn1.eps == 1e-3
    assert self.bn1.momentum == 0.01

wuyuefeng's avatar
wuyuefeng committed
93
94
    out_features = self(input_sp_tensor)
    assert out_features.features.shape == torch.Size([4, 4])