vote_module.py 6.82 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from torch.nn.functional import l1_loss, mse_loss, smooth_l1_loss


class VoteModule(nn.Module):
    """Vote module.

    Generate votes from seed point features.

    Args:
        in_channels (int): Number of channels of seed point features.
        vote_per_seed (int): Number of votes generated from each seed point.
        gt_per_seed (int): Number of ground truth votes generated
            from each seed point.
        conv_channels (tuple[int]): Out channels of vote
            generating convolution.
        conv_cfg (dict): Config of convolution.
            Default: dict(type='Conv1d').
        norm_cfg (dict): Config of normalization.
            Default: dict(type='BN1d').
        norm_feats (bool): Whether to normalize features.
            Default: True.
        loss_weight (float): Weight of voting loss.
    """

    def __init__(self,
                 in_channels,
                 vote_per_seed=1,
                 gt_per_seed=3,
                 conv_channels=(16, 16),
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d'),
                 norm_feats=True,
                 loss_weight=1.0):
        super().__init__()
        self.in_channels = in_channels
        self.vote_per_seed = vote_per_seed
        self.gt_per_seed = gt_per_seed
        self.norm_feats = norm_feats
        self.loss_weight = loss_weight

        prev_channels = in_channels
        vote_conv_list = list()
        for k in range(len(conv_channels)):
            vote_conv_list.append(
                ConvModule(
                    prev_channels,
                    conv_channels[k],
                    1,
                    padding=0,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    bias=True,
                    inplace=True))
            prev_channels = conv_channels[k]
        self.vote_conv = nn.Sequential(*vote_conv_list)

        # conv_out predicts coordinate and residual features
        out_channel = (3 + in_channels) * self.vote_per_seed
        self.conv_out = nn.Conv1d(prev_channels, out_channel, 1)

    def forward(self, seed_points, seed_feats):
        """forward.

        Args:
            seed_points (Tensor): (B, N, 3) coordinate of the seed points.
            seed_feats (Tensor): (B, C, N) features of the seed points.

        Returns:
            tuple[Tensor]:
                - vote_points: Voted xyz based on the seed points
                    with shape (B, M, 3) M=num_seed*vote_per_seed.
                - vote_features: Voted features based on the seed points with
                    shape (B, C, M) where M=num_seed*vote_per_seed,
                    C=vote_feature_dim.
        """
        batch_size, feat_channels, num_seed = seed_feats.shape
        num_vote = num_seed * self.vote_per_seed
        x = self.vote_conv(seed_feats)
        # (batch_size, (3+out_dim)*vote_per_seed, num_seed)
        votes = self.conv_out(x)

        votes = votes.transpose(2, 1).view(batch_size, num_seed,
                                           self.vote_per_seed, -1)
        offset = votes[:, :, :, 0:3]
        res_feats = votes[:, :, :, 3:]

        vote_points = (seed_points.unsqueeze(2) + offset).contiguous()
        vote_points = vote_points.view(batch_size, num_vote, 3)
        vote_feats = (seed_feats.transpose(2, 1).unsqueeze(2) +
                      res_feats).contiguous()
        vote_feats = vote_feats.view(batch_size, num_vote,
                                     feat_channels).transpose(2,
                                                              1).contiguous()

        if self.norm_feats:
            features_norm = torch.norm(vote_feats, p=2, dim=1)
            vote_feats = vote_feats.div(features_norm.unsqueeze(1))
        return vote_points, vote_feats

    def get_loss(self, seed_points, vote_points, seed_indices,
                 vote_targets_mask, vote_targets):
        """Calculate loss of voting module.

        Args:
            seed_points (Tensor): coordinate of the seed points.
            vote_points (Tensor): coordinate of the vote points.
            seed_indices (Tensor): indices of seed points in raw points.
            vote_targets_mask (Tensor): mask of valid vote targets.
            vote_targets (Tensor): targets of votes.

        Returns:
            Tensor: weighted vote loss.
        """
        batch_size, num_seed = seed_points.shape[:2]

        seed_gt_votes_mask = torch.gather(vote_targets_mask, 1,
                                          seed_indices).float()
        pos_num = torch.sum(seed_gt_votes_mask)
        seed_indices_expand = seed_indices.unsqueeze(-1).repeat(
            1, 1, 3 * self.gt_per_seed)
        seed_gt_votes = torch.gather(vote_targets, 1, seed_indices_expand)
        seed_gt_votes += seed_points.repeat(1, 1, 3)

        distance = self.nn_distance(
            vote_points.view(batch_size * num_seed, -1, 3),
            seed_gt_votes.view(batch_size * num_seed, -1, 3),
            mode='l1')[2]
        votes_distance = torch.min(distance, dim=1)[0]
        votes_dist = votes_distance.view(batch_size, num_seed)
        vote_loss = torch.sum(votes_dist * seed_gt_votes_mask) / (
            pos_num + 1e-6)

        return self.loss_weight * vote_loss

    def nn_distance(self, points1, points2, mode='smooth_l1'):
        """Find the nearest neighbor from point1 to point2

        Args:
            points1 (Tensor): points to find the Nearest neighbor.
            points2 (Tensor): points to find the Nearest neighbor.
            mode (str): Specify the function (smooth_l1, l1 or l2)
                to calculate distance.

        Returns:
            tuple[Tensor]:
                - distance1: the nearest distance from points1 to points2.
                - index1: the index of the nearest neighbor for points1.
                - distance2: the nearest distance from points2 to points1.
                - index2: the index of the nearest neighbor for points2.
        """
        assert mode in ['smooth_l1', 'l1', 'l2']
        N = points1.shape[1]
        M = points2.shape[1]
        pc1_expand_tile = points1.unsqueeze(2).repeat(1, 1, M, 1)
        pc2_expand_tile = points2.unsqueeze(1).repeat(1, N, 1, 1)

        if mode == 'smooth_l1':
            pc_dist = torch.sum(
                smooth_l1_loss(pc1_expand_tile, pc2_expand_tile), dim=-1)
        elif mode == 'l1':
            pc_dist = torch.sum(
                l1_loss(pc1_expand_tile, pc2_expand_tile), dim=-1)  # (B,N,M)
        elif mode == 'l2':
            pc_dist = torch.sum(
                mse_loss(pc1_expand_tile, pc2_expand_tile), dim=-1)  # (B,N,M)
        else:
            raise NotImplementedError

        distance1, index1 = torch.min(pc_dist, dim=2)  # (B,N)
        distance2, index2 = torch.min(pc_dist, dim=1)  # (B,M)
        return distance1, index1, distance2, index2