benchmarks.md 14.1 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

# Benchmarks

Here we benchmark the training and testing speed of models in MMDetection3D,
with some other popular open source 3D detection codebases.

## Settings

* Hardwares: 8 NVIDIA Tesla V100 (32G) GPUs, Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
* Software: Python 3.7, CUDA 10.1, cuDNN 7.6.5, PyTorch 1.3, numba 0.48.0.
* Model: Since all the other codebases implements different models, we compare the corresponding models with them separately. We try to use as similar settings as those of other codebases as possible using [benchmark configs](https://github.com/open-mmlab/MMDetection3D/blob/master/configs/benchmark).
* Metrics: We use the average throughput in iterations of the entire training run and skip the first 50 iterations of each epoch to skip GPU warmup time.
  Note that the throughput of a detector typically changes during training, because it depends on the predictions of the model.

## Main Results

### VoteNet

19
We compare our implementation of VoteNet with [votenet](https://github.com/facebookresearch/votenet/) and report the performance on SUNRGB-D v2 dataset under the AP@0.5 metric.
zhangwenwei's avatar
zhangwenwei committed
20
21

```eval_rst
ZwwWayne's avatar
ZwwWayne committed
22
23
24
25
26
+----------------+---------------------+--------------------+--------+
| Implementation | Training (sample/s) | Testing (sample/s) | AP@0.5 |
+================+=====================+====================+========+
| MMDetection3D  |        358          |         17         |  35.8  |
+----------------+---------------------+--------------------+--------+
zhangwenwei's avatar
zhangwenwei committed
27
| votenet        |        77           |         3          |  31.5  |
ZwwWayne's avatar
ZwwWayne committed
28
29
+----------------+---------------------+--------------------+--------+

zhangwenwei's avatar
zhangwenwei committed
30
31
32
33
```

### PointPillars

liyinhao's avatar
liyinhao committed
34
Since [Det3D](https://github.com/poodarchu/Det3D/) only provides PointPillars on car class while [OpenPCDet](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2) only provides PointPillars
zhangwenwei's avatar
zhangwenwei committed
35
36
37
38
39
on 3 classes, we compare with them separately. For performance on single class, we report the AP on moderate
condition following the KITTI benchmark and compare average AP over all classes on moderate condition for
performance on 3 classes.

```eval_rst
ZwwWayne's avatar
ZwwWayne committed
40
41
42
43
44
45
46
+----------------+---------------------+--------------------+
| Implementation | Training (sample/s) | Testing (sample/s) |
+================+=====================+====================+
| MMDetection3D  |         141         |       44.3         |
+----------------+---------------------+--------------------+
| Det3D          |         140         |        20          |
+----------------+---------------------+--------------------+
zhangwenwei's avatar
zhangwenwei committed
47
48
49
```

```eval_rst
zhangwenwei's avatar
zhangwenwei committed
50
51
52
53
54
55
56
+----------------+---------------------+--------------------+
| Implementation | Training (sample/s) | Testing (sample/s) |
+================+=====================+====================+
| MMDetection3D  |         107         |        45          |
+----------------+---------------------+--------------------+
| OpenPCDet      |         44          |        25          |
+----------------+---------------------+--------------------+
zhangwenwei's avatar
zhangwenwei committed
57
58
59
60
```

### SECOND

61
[Det3D](https://github.com/poodarchu/Det3D/) provides a different SECOND on car class and we cannot train the original SECOND by modifying the config.
liyinhao's avatar
liyinhao committed
62
So we only compare with [OpenPCDet](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2), which is a SECOND model on 3 classes, we report the AP on moderate
zhangwenwei's avatar
zhangwenwei committed
63
64
65
condition following the KITTI benchmark and compare average AP over all classes on moderate condition for
performance on 3 classes.

zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
71
72
73
74
```eval_rst
+----------------+---------------------+--------------------+
| Implementation | Training (sample/s) | Testing (sample/s) |
+================+=====================+====================+
| MMDetection3D  |         40          |         27         |
+----------------+---------------------+--------------------+
| OpenPCDet      |         30          |         32         |
+----------------+---------------------+--------------------+
```
zhangwenwei's avatar
zhangwenwei committed
75
76
77

### Part-A2

liyinhao's avatar
liyinhao committed
78
We benchmark Part-A2 with that in [OpenPCDet](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2). We report the AP on moderate condition following the KITTI benchmark
zhangwenwei's avatar
zhangwenwei committed
79
80
and compare average AP over all classes on moderate condition for performance on 3 classes.

zhangwenwei's avatar
zhangwenwei committed
81
82
83
84
85
86
87
88
89
```eval_rst
+----------------+---------------------+--------------------+
| Implementation | Training (sample/s) | Testing (sample/s) |
+================+=====================+====================+
| MMDetection3D  |         17          |         11         |
+----------------+---------------------+--------------------+
| OpenPCDet      |         14          |         13         |
+----------------+---------------------+--------------------+
```
zhangwenwei's avatar
zhangwenwei committed
90
91
92

## Details of Comparison

93
94
### Modification for Calculating Speed

zhangwenwei's avatar
zhangwenwei committed
95
* __Det3D__: At commit [255c593]()
96

liyinhao's avatar
liyinhao committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2)

    For training speed, we add code to record the running time in the file `./tools/train_utils/train_utils.py`. We calculate the speed of each epoch, and report the average speed of all the epochs.
    <details>
    <summary>
    (diff to make it use the same method for benchmarking speed - click to expand)
    </summary>

    ```diff
    diff --git a/tools/train_utils/train_utils.py b/tools/train_utils/train_utils.py
    index 91f21dd..021359d 100644
    --- a/tools/train_utils/train_utils.py
    +++ b/tools/train_utils/train_utils.py
    @@ -2,6 +2,7 @@ import torch
     import os
     import glob
     import tqdm
    +import datetime
     from torch.nn.utils import clip_grad_norm_


    @@ -13,7 +14,10 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
         if rank == 0:
             pbar = tqdm.tqdm(total=total_it_each_epoch, leave=leave_pbar, desc='train', dynamic_ncols=True)

    +    start_time = None
         for cur_it in range(total_it_each_epoch):
    +        if cur_it > 49 and start_time is None:
    +            start_time = datetime.datetime.now()
             try:
                 batch = next(dataloader_iter)
             except StopIteration:
    @@ -55,9 +59,11 @@ def train_one_epoch(model, optimizer, train_loader, model_func, lr_scheduler, ac
                     tb_log.add_scalar('learning_rate', cur_lr, accumulated_iter)
                     for key, val in tb_dict.items():
                         tb_log.add_scalar('train_' + key, val, accumulated_iter)
    +    endtime = datetime.datetime.now()
    +    speed = (endtime - start_time).seconds / (total_it_each_epoch - 50)
         if rank == 0:
             pbar.close()
    -    return accumulated_iter
    +    return accumulated_iter, speed


     def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_cfg,
    @@ -65,6 +71,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     lr_warmup_scheduler=None, ckpt_save_interval=1, max_ckpt_save_num=50,
                     merge_all_iters_to_one_epoch=False):
         accumulated_iter = start_iter
    +    speeds = []
         with tqdm.trange(start_epoch, total_epochs, desc='epochs', dynamic_ncols=True, leave=(rank == 0)) as tbar:
             total_it_each_epoch = len(train_loader)
             if merge_all_iters_to_one_epoch:
    @@ -82,7 +89,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     cur_scheduler = lr_warmup_scheduler
                 else:
                     cur_scheduler = lr_scheduler
    -            accumulated_iter = train_one_epoch(
    +            accumulated_iter, speed = train_one_epoch(
                     model, optimizer, train_loader, model_func,
                     lr_scheduler=cur_scheduler,
                     accumulated_iter=accumulated_iter, optim_cfg=optim_cfg,
    @@ -91,7 +98,7 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     total_it_each_epoch=total_it_each_epoch,
                     dataloader_iter=dataloader_iter
                 )
    -
    +            speeds.append(speed)
                 # save trained model
                 trained_epoch = cur_epoch + 1
                 if trained_epoch % ckpt_save_interval == 0 and rank == 0:
    @@ -107,6 +114,8 @@ def train_model(model, optimizer, train_loader, model_func, lr_scheduler, optim_
                     save_checkpoint(
                         checkpoint_state(model, optimizer, trained_epoch, accumulated_iter), filename=ckpt_name,
                     )
    +            print(speed)
    +    print(f'*******{sum(speeds) / len(speeds)}******')


     def model_state_to_cpu(model_state):
    ```

    </details>

    For testing speed, we add code to record the running time in the file `./tools/eval_utils/eval_utils.py`.
    <details>
    <summary>
    (diff to make it use the same method for benchmarking speed - click to expand)
    </summary>

    ```diff
    diff --git a/tools/eval_utils/eval_utils.py b/tools/eval_utils/eval_utils.py
    index 0cbf17b..f51e687 100644
    --- a/tools/eval_utils/eval_utils.py
    +++ b/tools/eval_utils/eval_utils.py
    @@ -49,8 +49,11 @@ def eval_one_epoch(cfg, model, dataloader, epoch_id, logger, dist_test=False, sa

         if cfg.LOCAL_RANK == 0:
             progress_bar = tqdm.tqdm(total=len(dataloader), leave=True, desc='eval', dynamic_ncols=True)
    -    start_time = time.time()
    +    num_warmup = 5
    +    pure_inf_time = 0
         for i, batch_dict in enumerate(dataloader):
    +        torch.cuda.synchronize()
    +        start_time = time.perf_counter()
             for key, val in batch_dict.items():
                 if not isinstance(val, np.ndarray):
                     continue
    @@ -61,7 +64,14 @@ def eval_one_epoch(cfg, model, dataloader, epoch_id, logger, dist_test=False, sa
             with torch.no_grad():
                 pred_dicts, ret_dict = model(batch_dict)
             disp_dict = {}
    -
    +        torch.cuda.synchronize()
    +        elapsed = time.perf_counter() - start_time
    +        if i >= num_warmup:
    +            pure_inf_time += elapsed
    +        if (i + 1) == 2000:
    +            pure_inf_time += elapsed
    +            fps = (i + 1 - num_warmup) / pure_inf_time
    +            out_str = f'Overall fps: {fps:.1f} img / s'
             statistics_info(cfg, ret_dict, metric, disp_dict)
             annos = dataset.generate_prediction_dicts(
                 batch_dict, pred_dicts, class_names,
    @@ -71,7 +81,7 @@ def eval_one_epoch(cfg, model, dataloader, epoch_id, logger, dist_test=False, sa
             if cfg.LOCAL_RANK == 0:
                 progress_bar.set_postfix(disp_dict)
                 progress_bar.update()
    -
    +    print(out_str)
         if cfg.LOCAL_RANK == 0:
             progress_bar.close()
    ```

    </details>
232

zhangwenwei's avatar
zhangwenwei committed
233
234
235
### VoteNet

* __MMDetection3D__: With release v0.1.0, run
liyinhao's avatar
liyinhao committed
236
237
238
239
240

  ```bash
  ./tools/dist_train.sh configs/votenet/votenet_16x8_sunrgbd-3d-10class.py 8 --no-validate
  ```

wuyuefeng's avatar
wuyuefeng committed
241
* __votenet__: At commit 2f6d6d3, run
zhangwenwei's avatar
zhangwenwei committed
242

liyinhao's avatar
liyinhao committed
243
244
245
  ```bash
  python train.py --dataset sunrgbd --batch_size 16
  ```
zhangwenwei's avatar
zhangwenwei committed
246
247
248
249

### PointPillars

* __MMDetection3D__: With release v0.1.0, run
liyinhao's avatar
liyinhao committed
250
251
252
253
254
255
256
257
258
259
260

  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```

* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2)

  ```bash
  cd tools
  sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/pointpillar.yaml --batch_size 32  --workers 32
  ```
261
262

* __MMDetection3D__: With release v0.1.0, run
liyinhao's avatar
liyinhao committed
263
264
265

  ```bash
  /tools/dist_train.sh configs/benchmark/hv_pointpillars_secfpn_3x8_100e_det3d_kitti-3d-car.py 8 --no-validate
ZwwWayne's avatar
ZwwWayne committed
266
  ```
liyinhao's avatar
liyinhao committed
267
268
269
270

* __Det3D__: At commit 255c593, use kitti_point_pillars_mghead_syncbn.py and run

  ```bash
ZwwWayne's avatar
ZwwWayne committed
271
272
  ./tools/scripts/train.sh --launcher=slurm --gpus=8
  ```
liyinhao's avatar
liyinhao committed
273

ZwwWayne's avatar
ZwwWayne committed
274
275
276
277
  Note that the config in train.sh is modified to train point pillars.

  <details>
  <summary>
liyinhao's avatar
liyinhao committed
278
  (diff to benchmark the similar models - click to expand)
ZwwWayne's avatar
ZwwWayne committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
  </summary>

  ```diff
  diff --git a/tools/scripts/train.sh b/tools/scripts/train.sh
  index 3a93f95..461e0ea 100755
  --- a/tools/scripts/train.sh
  +++ b/tools/scripts/train.sh
  @@ -16,9 +16,9 @@ then
   fi

   # Voxelnet
  -python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR
  +# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  kitti_car_vfev3_spmiddlefhd_rpn1_mghead_syncbn.py --work_dir=$SECOND_WORK_DIR
   # python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/cbgs/configs/  nusc_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$NUSC_CBGS_WORK_DIR
   # python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py examples/second/configs/  lyft_all_vfev3_spmiddleresnetfhd_rpn2_mghead_syncbn.py --work_dir=$LYFT_CBGS_WORK_DIR

   # PointPillars
  -# python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/  original_pp_mghead_syncbn_kitti.py --work_dir=$PP_WORK_DIR
  +python -m torch.distributed.launch --nproc_per_node=8 ./tools/train.py ./examples/point_pillars/configs/  kitti_point_pillars_mghead_syncbn.py
  ```
wuyuefeng's avatar
wuyuefeng committed
299

ZwwWayne's avatar
ZwwWayne committed
300
  </details>
zhangwenwei's avatar
zhangwenwei committed
301
302
303
304
305

### SECOND

* __MMDetection3D__: With release v0.1.0, run

liyinhao's avatar
liyinhao committed
306
307
308
  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_second_secfpn_4x8_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```
zhangwenwei's avatar
zhangwenwei committed
309

liyinhao's avatar
liyinhao committed
310
311
312
313
314
315
* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2)

  ```bash
  cd tools
  sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/second.yaml --batch_size 32  --workers 32
  ```
zhangwenwei's avatar
zhangwenwei committed
316
317
318
319
320

### Part-A2

* __MMDetection3D__: With release v0.1.0, run

liyinhao's avatar
liyinhao committed
321
322
323
324
325
326
327
328
329
330
  ```bash
  ./tools/dist_train.sh configs/benchmark/hv_PartA2_secfpn_4x8_cyclic_80e_pcdet_kitti-3d-3class.py 8 --no-validate
  ```

* __OpenPCDet__: At commit [b32fbddb](https://github.com/open-mmlab/OpenPCDet/tree/b32fbddbe06183507bad433ed99b407cbc2175c2)

  ```bash
  cd tools
  sh scripts/slurm_train.sh ${PARTITION} ${JOB_NAME} 8  --cfg_file ./cfgs/PartA2.yaml --batch_size 32 --workers 32
  ```