transforms.py 6.04 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import torch


wuyuefeng's avatar
wuyuefeng committed
4
def bbox3d_mapping_back(bboxes, scale_factor, flip_horizontal, flip_vertical):
zhangwenwei's avatar
zhangwenwei committed
5
6
    """Map bboxes from testing scale to original image scale"""
    new_bboxes = bboxes.clone()
wuyuefeng's avatar
wuyuefeng committed
7
8
9
10
    if flip_horizontal:
        new_bboxes.flip('horizontal')
    if flip_vertical:
        new_bboxes.flip('vertical')
zhangwenwei's avatar
zhangwenwei committed
11
12
13
14
15
    new_bboxes.scale(1 / scale_factor)

    return new_bboxes


zhangwenwei's avatar
zhangwenwei committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def transform_lidar_to_cam(boxes_lidar):
    """
    Only transform format, not exactly in camera coords
    :param boxes_lidar: (N, 3 or 7) [x, y, z, w, l, h, ry] in LiDAR coords
    :return: boxes_cam: (N, 3 or 7) [x, y, z, h, w, l, ry] in camera coords
    """
    # boxes_cam = boxes_lidar.new_tensor(boxes_lidar.data)
    boxes_cam = boxes_lidar.clone().detach()
    boxes_cam[:, 0] = -boxes_lidar[:, 1]
    boxes_cam[:, 1] = -boxes_lidar[:, 2]
    boxes_cam[:, 2] = boxes_lidar[:, 0]
    if boxes_cam.shape[1] > 3:
        boxes_cam[:, [3, 4, 5]] = boxes_lidar[:, [5, 3, 4]]
    return boxes_cam


def boxes3d_to_bev_torch(boxes3d):
    """
    :param boxes3d: (N, 7) [x, y, z, h, w, l, ry] in camera coords
    :return:
        boxes_bev: (N, 5) [x1, y1, x2, y2, ry]
    """
    boxes_bev = boxes3d.new(torch.Size((boxes3d.shape[0], 5)))

    cu, cv = boxes3d[:, 0], boxes3d[:, 2]
    half_l, half_w = boxes3d[:, 5] / 2, boxes3d[:, 4] / 2
    boxes_bev[:, 0], boxes_bev[:, 1] = cu - half_l, cv - half_w
    boxes_bev[:, 2], boxes_bev[:, 3] = cu + half_l, cv + half_w
    boxes_bev[:, 4] = boxes3d[:, 6]
    return boxes_bev


def boxes3d_to_bev_torch_lidar(boxes3d):
    """
    :param boxes3d: (N, 7) [x, y, z, w, l, h, ry] in LiDAR coords
    :return:
        boxes_bev: (N, 5) [x1, y1, x2, y2, ry]
    """
    boxes_bev = boxes3d.new(torch.Size((boxes3d.shape[0], 5)))

    cu, cv = boxes3d[:, 0], boxes3d[:, 1]
    half_l, half_w = boxes3d[:, 4] / 2, boxes3d[:, 3] / 2
    boxes_bev[:, 0], boxes_bev[:, 1] = cu - half_w, cv - half_l
    boxes_bev[:, 2], boxes_bev[:, 3] = cu + half_w, cv + half_l
    boxes_bev[:, 4] = boxes3d[:, 6]
    return boxes_bev
wuyuefeng's avatar
wuyuefeng committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83


def bbox3d2roi(bbox_list):
    """Convert a list of bboxes to roi format.

    Args:
        bbox_list (list[Tensor]): a list of bboxes corresponding to a batch
            of images.

    Returns:
        Tensor: shape (n, c), [batch_ind, x, y ...]
    """
    rois_list = []
    for img_id, bboxes in enumerate(bbox_list):
        if bboxes.size(0) > 0:
            img_inds = bboxes.new_full((bboxes.size(0), 1), img_id)
            rois = torch.cat([img_inds, bboxes], dim=-1)
        else:
            rois = torch.zeros_like(bboxes)
        rois_list.append(rois)
    rois = torch.cat(rois_list, 0)
    return rois
zhangwenwei's avatar
zhangwenwei committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97


def bbox3d2result(bboxes, scores, labels):
    """Convert detection results to a list of numpy arrays.

    Args:
        bboxes (Tensor): shape (n, 5)
        labels (Tensor): shape (n, )
        scores (Tensor): shape (n, )

    Returns:
        dict(Tensor): bbox results in cpu mode
    """
    return dict(
98
99
100
        boxes_3d=bboxes.to('cpu'),
        scores_3d=scores.cpu(),
        labels_3d=labels.cpu())
wuyuefeng's avatar
Votenet  
wuyuefeng committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184


def upright_depth_to_lidar_torch(points=None,
                                 bboxes=None,
                                 to_bottom_center=False):
    """Convert points and boxes in upright depth coordinate to lidar.

    Args:
        points (None | Tensor): points in upright depth coordinate.
        bboxes (None | Tensor): bboxes in upright depth coordinate.
        to_bottom_center (bool): covert bboxes to bottom center.

    Returns:
        tuple: points and bboxes in lidar coordinate.
    """
    if points is not None:
        points_lidar = points.clone()
        points_lidar = points_lidar[..., [1, 0, 2]]
        points_lidar[..., 1] *= -1
    else:
        points_lidar = None

    if bboxes is not None:
        bboxes_lidar = bboxes.clone()
        bboxes_lidar = bboxes_lidar[..., [1, 0, 2, 4, 3, 5, 6]]
        bboxes_lidar[..., 1] *= -1
        if to_bottom_center:
            bboxes_lidar[..., 2] -= 0.5 * bboxes_lidar[..., 5]
    else:
        bboxes_lidar = None

    return points_lidar, bboxes_lidar


def box3d_to_corner3d_upright_depth(boxes3d):
    """Convert box3d to corner3d in upright depth coordinate

    Args:
        boxes3d (Tensor): boxes with shape [n,7] in upright depth coordinate

    Returns:
        Tensor: boxes with [n, 8, 3] in upright depth coordinate
    """
    boxes_num = boxes3d.shape[0]
    ry = boxes3d[:, 6:7]
    l, w, h = boxes3d[:, 3:4], boxes3d[:, 4:5], boxes3d[:, 5:6]
    zeros = boxes3d.new_zeros((boxes_num, 1))
    ones = boxes3d.new_ones((boxes_num, 1))
    # zeros = torch.cuda.FloatTensor(boxes_num, 1).fill_(0)
    # ones = torch.cuda.FloatTensor(boxes_num, 1).fill_(1)
    x_corners = torch.cat(
        [-l / 2., l / 2., l / 2., -l / 2., -l / 2., l / 2., l / 2., -l / 2.],
        dim=1)  # (N, 8)
    y_corners = torch.cat(
        [w / 2., w / 2., -w / 2., -w / 2., w / 2., w / 2., -w / 2., -w / 2.],
        dim=1)  # (N, 8)
    z_corners = torch.cat(
        [h / 2., h / 2., h / 2., h / 2., -h / 2., -h / 2., -h / 2., -h / 2.],
        dim=1)  # (N, 8)
    temp_corners = torch.cat(
        (x_corners.unsqueeze(dim=2), y_corners.unsqueeze(dim=2),
         z_corners.unsqueeze(dim=2)),
        dim=2)  # (N, 8, 3)

    cosa, sina = torch.cos(-ry), torch.sin(-ry)
    raw_1 = torch.cat([cosa, -sina, zeros], dim=1)  # (N, 3)
    raw_2 = torch.cat([sina, cosa, zeros], dim=1)  # (N, 3)
    raw_3 = torch.cat([zeros, zeros, ones], dim=1)  # (N, 3)
    R = torch.cat((raw_1.unsqueeze(dim=1), raw_2.unsqueeze(dim=1),
                   raw_3.unsqueeze(dim=1)),
                  dim=1)  # (N, 3, 3)
    rotated_corners = torch.matmul(temp_corners, R)  # (N, 8, 3)
    x_corners = rotated_corners[:, :, 0]
    y_corners = rotated_corners[:, :, 1]
    z_corners = rotated_corners[:, :, 2]
    x_loc, y_loc, z_loc = boxes3d[:, 0], boxes3d[:, 1], boxes3d[:, 2]

    x = x_loc.view(-1, 1) + x_corners.view(-1, 8)
    y = y_loc.view(-1, 1) + y_corners.view(-1, 8)
    z = z_loc.view(-1, 1) + z_corners.view(-1, 8)
    corners3d = torch.cat(
        (x.view(-1, 8, 1), y.view(-1, 8, 1), z.view(-1, 8, 1)), dim=2)

    return corners3d