vis_utils.py 6.04 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
3
4
5
6
7
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import numpy as np
import torch
import trimesh

zhangshilong's avatar
zhangshilong committed
8
9
from mmdet3d.structures import (Box3DMode, CameraInstance3DBoxes, Coord3DMode,
                                DepthInstance3DBoxes, LiDARInstance3DBoxes)
ZCMax's avatar
ZCMax committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126


def write_obj(points, out_filename):
    """Write points into ``obj`` format for meshlab visualization.

    Args:
        points (np.ndarray): Points in shape (N, dim).
        out_filename (str): Filename to be saved.
    """
    N = points.shape[0]
    fout = open(out_filename, 'w')
    for i in range(N):
        if points.shape[1] == 6:
            c = points[i, 3:].astype(int)
            fout.write(
                'v %f %f %f %d %d %d\n' %
                (points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2]))

        else:
            fout.write('v %f %f %f\n' %
                       (points[i, 0], points[i, 1], points[i, 2]))
    fout.close()


def write_oriented_bbox(scene_bbox, out_filename):
    """Export oriented (around Z axis) scene bbox to meshes.

    Args:
        scene_bbox(list[ndarray] or ndarray): xyz pos of center and
            3 lengths (x_size, y_size, z_size) and heading angle around Z axis.
            Y forward, X right, Z upward. heading angle of positive X is 0,
            heading angle of positive Y is 90 degrees.
        out_filename(str): Filename.
    """

    def heading2rotmat(heading_angle):
        rotmat = np.zeros((3, 3))
        rotmat[2, 2] = 1
        cosval = np.cos(heading_angle)
        sinval = np.sin(heading_angle)
        rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]])
        return rotmat

    def convert_oriented_box_to_trimesh_fmt(box):
        ctr = box[:3]
        lengths = box[3:6]
        trns = np.eye(4)
        trns[0:3, 3] = ctr
        trns[3, 3] = 1.0
        trns[0:3, 0:3] = heading2rotmat(box[6])
        box_trimesh_fmt = trimesh.creation.box(lengths, trns)
        return box_trimesh_fmt

    if len(scene_bbox) == 0:
        scene_bbox = np.zeros((1, 7))
    scene = trimesh.scene.Scene()
    for box in scene_bbox:
        scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))

    mesh_list = trimesh.util.concatenate(scene.dump())
    # save to obj file
    trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj')

    return


def to_depth_mode(points, bboxes):
    """Convert points and bboxes to Depth Coord and Depth Box mode."""
    if points is not None:
        points = Coord3DMode.convert_point(points.copy(), Coord3DMode.LIDAR,
                                           Coord3DMode.DEPTH)
    if bboxes is not None:
        bboxes = Box3DMode.convert(bboxes.clone(), Box3DMode.LIDAR,
                                   Box3DMode.DEPTH)
    return points, bboxes


# TODO: refactor lidar2img to img_meta
def proj_lidar_bbox3d_to_img(bboxes_3d: LiDARInstance3DBoxes,
                             input_meta: dict) -> np.array:
    """Project the 3D bbox on 2D plane.

    Args:
        bboxes_3d (:obj:`LiDARInstance3DBoxes`):
            3d bbox in lidar coordinate system to visualize.
        lidar2img (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
    """
    corners_3d = bboxes_3d.corners
    num_bbox = corners_3d.shape[0]
    pts_4d = np.concatenate(
        [corners_3d.reshape(-1, 3),
         np.ones((num_bbox * 8, 1))], axis=-1)
    lidar2img = copy.deepcopy(input_meta['lidar2img']).reshape(4, 4)
    if isinstance(lidar2img, torch.Tensor):
        lidar2img = lidar2img.cpu().numpy()
    pts_2d = pts_4d @ lidar2img.T

    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)

    return imgfov_pts_2d


# TODO: remove third parameter in all functions here in favour of img_metas
def proj_depth_bbox3d_to_img(bboxes_3d: DepthInstance3DBoxes,
                             input_meta: dict) -> np.array:
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes_3d (:obj:`DepthInstance3DBoxes`, shape=[M, 7]):
            3d bbox in depth coordinate system to visualize.
        input_meta (dict): Used in coordinates transformation.
    """
    from mmdet3d.models import apply_3d_transformation
zhangshilong's avatar
zhangshilong committed
127
    from mmdet3d.structures import points_cam2img
ZCMax's avatar
ZCMax committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

    input_meta = copy.deepcopy(input_meta)
    corners_3d = bboxes_3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)

    # first reverse the data transformations
    xyz_depth = apply_3d_transformation(
        points_3d, 'DEPTH', input_meta, reverse=True)

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(xyz_depth,
                               xyz_depth.new_tensor(input_meta['depth2img']))
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

    return imgfov_pts_2d


# project the camera bboxes 3d to image
def proj_camera_bbox3d_to_img(bboxes_3d: CameraInstance3DBoxes,
                              input_meta: dict) -> np.array:
    """Project the 3D bbox on 2D plane and draw on input image.

    Args:
        bboxes_3d (:obj:`CameraInstance3DBoxes`, shape=[M, 7]):
            3d bbox in camera coordinate system to visualize.
        cam2img (np.array)): Camera intrinsic matrix,
            denoted as `K` in depth bbox coordinate system.
    """
zhangshilong's avatar
zhangshilong committed
158
    from mmdet3d.structures import points_cam2img
ZCMax's avatar
ZCMax committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    cam2img = copy.deepcopy(input_meta['cam2img'])
    corners_3d = bboxes_3d.corners
    num_bbox = corners_3d.shape[0]
    points_3d = corners_3d.reshape(-1, 3)
    if not isinstance(cam2img, torch.Tensor):
        cam2img = torch.from_numpy(np.array(cam2img))

    assert (cam2img.shape == torch.Size([3, 3])
            or cam2img.shape == torch.Size([4, 4]))
    cam2img = cam2img.float().cpu()

    # project to 2d to get image coords (uv)
    uv_origin = points_cam2img(points_3d, cam2img)
    uv_origin = (uv_origin - 1).round()
    imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()

    return imgfov_pts_2d