nus-3d.py 2.35 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
point_cloud_range = [-50, -50, -5, 50, 50, 3]
class_names = [
    'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
    'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
file_client_args = dict(backend='disk')
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScale',
        rot_uniform_noise=[-0.3925, 0.3925],
        scaling_uniform_noise=[0.95, 1.05],
        trans_normal_noise=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        file_client_args=file_client_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        file_client_args=file_client_args),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='RandomFlip3D', flip_ratio=0),
    dict(
        type='DefaultFormatBundle3D',
        class_names=class_names,
        with_label=False),
    dict(type='Collect3D', keys=['points'])
]

data = dict(
    samples_per_gpu=4,
    workers_per_gpu=4,
    train=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_infos_train.pkl',
        pipeline=train_pipeline,
        classes=class_names,
        test_mode=False),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_infos_val.pkl',
        pipeline=test_pipeline,
        classes=class_names,
        test_mode=True),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'nuscenes_infos_val.pkl',
        pipeline=test_pipeline,
        classes=class_names,
        test_mode=True))