test_forward.py 6.25 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
"""Test model forward process.
zhangwenwei's avatar
zhangwenwei committed
2
3
4
5
6
7
8
9

CommandLine:
    pytest tests/test_forward.py
    xdoctest tests/test_forward.py zero
"""
import copy
import numpy as np
import torch
zhangwenwei's avatar
zhangwenwei committed
10
from os.path import dirname, exists, join
zhangwenwei's avatar
zhangwenwei committed
11
12
13


def _get_config_directory():
zhangwenwei's avatar
zhangwenwei committed
14
    """Find the predefined detector config directory."""
zhangwenwei's avatar
zhangwenwei committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    try:
        # Assume we are running in the source mmdetection repo
        repo_dpath = dirname(dirname(__file__))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet
        repo_dpath = dirname(dirname(mmdet.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
zhangwenwei's avatar
zhangwenwei committed
29
    """Load a configuration as a python module."""
zhangwenwei's avatar
zhangwenwei committed
30
31
32
33
34
35
36
37
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_detector_cfg(fname):
zhangwenwei's avatar
zhangwenwei committed
38
39
40
41
    """Grab configs necessary to create a detector.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
zhangwenwei's avatar
zhangwenwei committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg))
    return model, train_cfg, test_cfg


def _test_two_stage_forward(cfg_file):
    model, train_cfg, test_cfg = _get_detector_cfg(cfg_file)
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (1, 3, 256, 256)

    # Test forward train with a non-empty truth batch
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[10])
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    gt_masks = mm_inputs['gt_masks']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        gt_masks=gt_masks,
        return_loss=True)
    assert isinstance(losses, dict)
zhangwenwei's avatar
zhangwenwei committed
75
76
77
78
    loss, _ = detector._parse_losses(losses)
    loss.requires_grad_(True)
    assert float(loss.item()) > 0
    loss.backward()
zhangwenwei's avatar
zhangwenwei committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    # Test forward train with an empty truth batch
    mm_inputs = _demo_mm_inputs(input_shape, num_items=[0])
    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    gt_masks = mm_inputs['gt_masks']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        gt_masks=gt_masks,
        return_loss=True)
    assert isinstance(losses, dict)
zhangwenwei's avatar
zhangwenwei committed
95
96
97
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0
    loss.backward()
zhangwenwei's avatar
zhangwenwei committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result)


def _test_single_stage_forward(cfg_file):
    model, train_cfg, test_cfg = _get_detector_cfg(cfg_file)
    model['pretrained'] = None

    from mmdet.models import build_detector
    detector = build_detector(model, train_cfg=train_cfg, test_cfg=test_cfg)

    input_shape = (1, 3, 300, 300)
    mm_inputs = _demo_mm_inputs(input_shape)

    imgs = mm_inputs.pop('imgs')
    img_metas = mm_inputs.pop('img_metas')

    # Test forward train
    gt_bboxes = mm_inputs['gt_bboxes']
    gt_labels = mm_inputs['gt_labels']
    losses = detector.forward(
        imgs,
        img_metas,
        gt_bboxes=gt_bboxes,
        gt_labels=gt_labels,
        return_loss=True)
    assert isinstance(losses, dict)
zhangwenwei's avatar
zhangwenwei committed
132
133
    loss, _ = detector._parse_losses(losses)
    assert float(loss.item()) > 0
zhangwenwei's avatar
zhangwenwei committed
134
135
136
137
138
139
140
141
142
143
144
145
146

    # Test forward test
    with torch.no_grad():
        img_list = [g[None, :] for g in imgs]
        batch_results = []
        for one_img, one_meta in zip(img_list, img_metas):
            result = detector.forward([one_img], [[one_meta]],
                                      return_loss=False)
            batch_results.append(result)


def _demo_mm_inputs(input_shape=(1, 3, 300, 300),
                    num_items=None, num_classes=10):  # yapf: disable
zhangwenwei's avatar
zhangwenwei committed
147
    """Create a superset of inputs needed to run test or train batches.
zhangwenwei's avatar
zhangwenwei committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

    Args:
        input_shape (tuple):
            input batch dimensions

        num_items (None | List[int]):
            specifies the number of boxes in each batch item

        num_classes (int):
            number of different labels a box might have
    """
    from mmdet.core import BitmapMasks

    (N, C, H, W) = input_shape

    rng = np.random.RandomState(0)

    imgs = rng.rand(*input_shape)

    img_metas = [{
        'img_shape': (H, W, C),
        'ori_shape': (H, W, C),
        'pad_shape': (H, W, C),
        'filename': '<demo>.png',
        'scale_factor': 1.0,
        'flip': False,
    } for _ in range(N)]

    gt_bboxes = []
    gt_labels = []
    gt_masks = []

    for batch_idx in range(N):
        if num_items is None:
            num_boxes = rng.randint(1, 10)
        else:
            num_boxes = num_items[batch_idx]

        cx, cy, bw, bh = rng.rand(num_boxes, 4).T

        tl_x = ((cx * W) - (W * bw / 2)).clip(0, W)
        tl_y = ((cy * H) - (H * bh / 2)).clip(0, H)
        br_x = ((cx * W) + (W * bw / 2)).clip(0, W)
        br_y = ((cy * H) + (H * bh / 2)).clip(0, H)

        boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T
        class_idxs = rng.randint(1, num_classes, size=num_boxes)

        gt_bboxes.append(torch.FloatTensor(boxes))
        gt_labels.append(torch.LongTensor(class_idxs))

    mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8)
    gt_masks.append(BitmapMasks(mask, H, W))

    mm_inputs = {
        'imgs': torch.FloatTensor(imgs).requires_grad_(True),
        'img_metas': img_metas,
        'gt_bboxes': gt_bboxes,
        'gt_labels': gt_labels,
        'gt_bboxes_ignore': None,
        'gt_masks': gt_masks,
    }
    return mm_inputs