test_config.py 8.82 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
from os.path import dirname, exists, join, relpath


def _get_config_directory():
zhangwenwei's avatar
zhangwenwei committed
5
    """Find the predefined detector config directory."""
zhangwenwei's avatar
zhangwenwei committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
    try:
        # Assume we are running in the source mmdetection repo
        repo_dpath = dirname(dirname(__file__))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet
        repo_dpath = dirname(dirname(mmdet.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def test_config_build_detector():
zhangwenwei's avatar
zhangwenwei committed
20
21
    """Test that all detection models defined in the configs can be
    initialized."""
zhangwenwei's avatar
zhangwenwei committed
22
    from mmcv import Config
zhangwenwei's avatar
zhangwenwei committed
23

zhangwenwei's avatar
zhangwenwei committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    from mmdet3d.models import build_detector

    config_dpath = _get_config_directory()
    print('Found config_dpath = {!r}'.format(config_dpath))

    import glob
    config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py')))
    config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
    config_names = [relpath(p, config_dpath) for p in config_fpaths]

    print('Using {} config files'.format(len(config_names)))

    for config_fname in config_names:
        config_fpath = join(config_dpath, config_fname)
        config_mod = Config.fromfile(config_fpath)

        config_mod.model
        config_mod.train_cfg
        config_mod.test_cfg
        print('Building detector, config_fpath = {!r}'.format(config_fpath))

        # Remove pretrained keys to allow for testing in an offline environment
        if 'pretrained' in config_mod.model:
            config_mod.model['pretrained'] = None

        detector = build_detector(
            config_mod.model,
            train_cfg=config_mod.train_cfg,
            test_cfg=config_mod.test_cfg)
        assert detector is not None

        if 'roi_head' in config_mod.model.keys():
            # for two stage detector
            # detectors must have bbox head
            assert detector.roi_head.with_bbox and detector.with_bbox
            assert detector.roi_head.with_mask == detector.with_mask

            head_config = config_mod.model['roi_head']
wuyuefeng's avatar
wuyuefeng committed
62
63
64
65
            if head_config.type == 'PartAggregationROIHead':
                check_parta2_roi_head(head_config, detector.roi_head)
            else:
                _check_roi_head(head_config, detector.roi_head)
zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
71
72
73
        # else:
        #     # for single stage detector
        #     # detectors must have bbox head
        #     # assert detector.with_bbox
        #     head_config = config_mod.model['bbox_head']
        #     _check_bbox_head(head_config, detector.bbox_head)


74
def test_config_build_pipeline():
zhangwenwei's avatar
zhangwenwei committed
75
76
    """Test that all detection models defined in the configs can be
    initialized."""
77
    from mmcv import Config
zhangwenwei's avatar
zhangwenwei committed
78

79
80
81
82
83
    from mmdet3d.datasets.pipelines import Compose

    config_dpath = _get_config_directory()
    print('Found config_dpath = {!r}'.format(config_dpath))

84
85
    # Other configs needs database sampler.
    config_names = [
zhangwenwei's avatar
zhangwenwei committed
86
        'pointpillars/hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py',
87
    ]
88
89
90
91
92
93
94
95
96
97
98
99
100
101

    print('Using {} config files'.format(len(config_names)))

    for config_fname in config_names:
        config_fpath = join(config_dpath, config_fname)
        config_mod = Config.fromfile(config_fpath)

        # build train_pipeline
        train_pipeline = Compose(config_mod.train_pipeline)
        test_pipeline = Compose(config_mod.test_pipeline)
        assert train_pipeline is not None
        assert test_pipeline is not None


zhangwenwei's avatar
zhangwenwei committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def _check_roi_head(config, head):
    # check consistency between head_config and roi_head
    assert config['type'] == head.__class__.__name__

    # check roi_align
    bbox_roi_cfg = config.bbox_roi_extractor
    bbox_roi_extractor = head.bbox_roi_extractor
    _check_roi_extractor(bbox_roi_cfg, bbox_roi_extractor)

    # check bbox head infos
    bbox_cfg = config.bbox_head
    bbox_head = head.bbox_head
    _check_bbox_head(bbox_cfg, bbox_head)

    if head.with_mask:
        # check roi_align
        if config.mask_roi_extractor:
            mask_roi_cfg = config.mask_roi_extractor
            mask_roi_extractor = head.mask_roi_extractor
            _check_roi_extractor(mask_roi_cfg, mask_roi_extractor,
                                 bbox_roi_extractor)

        # check mask head infos
        mask_head = head.mask_head
        mask_cfg = config.mask_head
        _check_mask_head(mask_cfg, mask_head)


def _check_roi_extractor(config, roi_extractor, prev_roi_extractor=None):
zhangwenwei's avatar
zhangwenwei committed
131
    from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    if isinstance(roi_extractor, nn.ModuleList):
        if prev_roi_extractor:
            prev_roi_extractor = prev_roi_extractor[0]
        roi_extractor = roi_extractor[0]

    assert (len(config.featmap_strides) == len(roi_extractor.roi_layers))
    assert (config.out_channels == roi_extractor.out_channels)
    from torch.nn.modules.utils import _pair
    assert (_pair(
        config.roi_layer.out_size) == roi_extractor.roi_layers[0].out_size)

    if 'use_torchvision' in config.roi_layer:
        assert (config.roi_layer.use_torchvision ==
                roi_extractor.roi_layers[0].use_torchvision)
    elif 'aligned' in config.roi_layer:
        assert (
            config.roi_layer.aligned == roi_extractor.roi_layers[0].aligned)

    if prev_roi_extractor:
        assert (roi_extractor.roi_layers[0].aligned ==
                prev_roi_extractor.roi_layers[0].aligned)
        assert (roi_extractor.roi_layers[0].use_torchvision ==
                prev_roi_extractor.roi_layers[0].use_torchvision)


def _check_mask_head(mask_cfg, mask_head):
zhangwenwei's avatar
zhangwenwei committed
158
    from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    if isinstance(mask_cfg, list):
        for single_mask_cfg, single_mask_head in zip(mask_cfg, mask_head):
            _check_mask_head(single_mask_cfg, single_mask_head)
    elif isinstance(mask_head, nn.ModuleList):
        for single_mask_head in mask_head:
            _check_mask_head(mask_cfg, single_mask_head)
    else:
        assert mask_cfg['type'] == mask_head.__class__.__name__
        assert mask_cfg.in_channels == mask_head.in_channels
        assert (
            mask_cfg.conv_out_channels == mask_head.conv_logits.in_channels)
        class_agnostic = mask_cfg.get('class_agnostic', False)
        out_dim = (1 if class_agnostic else mask_cfg.num_classes)
        assert mask_head.conv_logits.out_channels == out_dim


def _check_bbox_head(bbox_cfg, bbox_head):
zhangwenwei's avatar
zhangwenwei committed
176
    from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    if isinstance(bbox_cfg, list):
        for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head):
            _check_bbox_head(single_bbox_cfg, single_bbox_head)
    elif isinstance(bbox_head, nn.ModuleList):
        for single_bbox_head in bbox_head:
            _check_bbox_head(bbox_cfg, single_bbox_head)
    else:
        assert bbox_cfg['type'] == bbox_head.__class__.__name__
        assert bbox_cfg.in_channels == bbox_head.in_channels
        with_cls = bbox_cfg.get('with_cls', True)
        if with_cls:
            fc_out_channels = bbox_cfg.get('fc_out_channels', 2048)
            assert (fc_out_channels == bbox_head.fc_cls.in_features)
            assert bbox_cfg.num_classes + 1 == bbox_head.fc_cls.out_features

        with_reg = bbox_cfg.get('with_reg', True)
        if with_reg:
            out_dim = (4 if bbox_cfg.reg_class_agnostic else 4 *
                       bbox_cfg.num_classes)
            assert bbox_head.fc_reg.out_features == out_dim
wuyuefeng's avatar
wuyuefeng committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225


def check_parta2_roi_head(config, head):
    assert config['type'] == head.__class__.__name__

    # check seg_roi_extractor
    seg_roi_cfg = config.seg_roi_extractor
    seg_roi_extractor = head.seg_roi_extractor
    _check_parta2_roi_extractor(seg_roi_cfg, seg_roi_extractor)

    # check part_roi_extractor
    part_roi_cfg = config.part_roi_extractor
    part_roi_extractor = head.part_roi_extractor
    _check_parta2_roi_extractor(part_roi_cfg, part_roi_extractor)

    # check bbox head infos
    bbox_cfg = config.bbox_head
    bbox_head = head.bbox_head
    _check_parta2_bbox_head(bbox_cfg, bbox_head)


def _check_parta2_roi_extractor(config, roi_extractor):
    assert config['type'] == roi_extractor.__class__.__name__
    assert (config.roi_layer.out_size == roi_extractor.roi_layer.out_size)
    assert (config.roi_layer.max_pts_per_voxel ==
            roi_extractor.roi_layer.max_pts_per_voxel)


def _check_parta2_bbox_head(bbox_cfg, bbox_head):
zhangwenwei's avatar
zhangwenwei committed
226
    from torch import nn as nn
wuyuefeng's avatar
wuyuefeng committed
227
228
229
230
231
232
233
234
235
236
237
    if isinstance(bbox_cfg, list):
        for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head):
            _check_bbox_head(single_bbox_cfg, single_bbox_head)
    elif isinstance(bbox_head, nn.ModuleList):
        for single_bbox_head in bbox_head:
            _check_bbox_head(bbox_cfg, single_bbox_head)
    else:
        assert bbox_cfg['type'] == bbox_head.__class__.__name__
        assert bbox_cfg.seg_in_channels == bbox_head.seg_conv[0][0].in_channels
        assert bbox_cfg.part_in_channels == bbox_head.part_conv[0][
            0].in_channels