dsvt_transformer.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# modified from https://github.com/Haiyang-W/DSVT
import torch
import torch.nn as nn

from mmdet3d.registry import MODELS
from .dsvt_input_layer import DSVTInputLayer


@MODELS.register_module()
class DSVTMiddleEncoder(nn.Module):
    '''Dynamic Sparse Voxel Transformer Backbone.
    Args:
        INPUT_LAYER: Config of input layer, which converts the output of vfe
            to dsvt input.
        block_name (list[string]): Name of blocks for each stage. Length:
            stage_num.
        set_info (list[list[int, int]]): A list of set config for each stage.
            Eelement i contains
            [set_size, block_num], where set_size is the number of voxel in a
            set and block_num is the number of blocks for stage i. Length:
            stage_num.
        dim_model (list[int]): Number of input channels for each stage.
            Length: stage_num.
        nhead (list[int]): Number of attention heads for each stage.
            Length: stage_num.
        dim_feedforward (list[int]): Dimensions of the feedforward network in
            set attention for each stage. Length: stage num.
        dropout (float): Drop rate of set attention.
        activation (string): Name of activation layer in set attention.
        reduction_type (string): Pooling method between stages.
            One of: "attention", "maxpool", "linear".
        output_shape (tuple[int, int]): Shape of output bev feature.
        conv_out_channel (int): Number of output channels.

    '''

    def __init__(
            self,
            input_layer=dict(
                sparse_shape=[468, 468, 1],
                downsample_stride=[],
                dim_model=[192],
                set_info=[[36, 4]],
                window_shape=[[12, 12, 1]],
                hybrid_factor=[2, 2, 1],  # x, y, z
                shifts_list=[[[0, 0, 0], [6, 6, 0]]],
                normalize_pos=False),
            stage_num=1,
            output_shape=[468, 468],
            reduction_type='attention',
            downsample_stride=[],
            set_info=[[36, 4]],
            dim_model=[192],
            dim_feedforward=[384],
            nhead=[8],
            conv_out_channel=192,
            dropout=0.,
            activation='gelu'):
        super().__init__()
        self.input_layer = DSVTInputLayer(**input_layer)
        self.reduction_type = reduction_type

        # Sparse Regional Attention Blocks
        for stage_id in range(stage_num):
            num_blocks_this_stage = set_info[stage_id][-1]
            dmodel_this_stage = dim_model[stage_id]
            dfeed_this_stage = dim_feedforward[stage_id]
            num_head_this_stage = nhead[stage_id]
            block_list = []
            norm_list = []
            for i in range(num_blocks_this_stage):
                block_list.append(
                    DSVTBlock(
                        dmodel_this_stage,
                        num_head_this_stage,
                        dfeed_this_stage,
                        dropout,
                        activation,
                        batch_first=True))
                norm_list.append(nn.LayerNorm(dmodel_this_stage))
            self.__setattr__(f'stage_{stage_id}', nn.ModuleList(block_list))
            self.__setattr__(f'residual_norm_stage_{stage_id}',
                             nn.ModuleList(norm_list))

            # apply pooling except the last stage
            if stage_id < stage_num - 1:
                downsample_window = downsample_stride[stage_id]
                dmodel_next_stage = dim_model[stage_id + 1]
                pool_volume = torch.IntTensor(downsample_window).prod().item()
                if self.reduction_type == 'linear':
                    cat_feat_dim = dmodel_this_stage * torch.IntTensor(
                        downsample_window).prod().item()
                    self.__setattr__(
                        f'stage_{stage_id}_reduction',
                        StageReductionBlock(cat_feat_dim, dmodel_next_stage))
                elif self.reduction_type == 'maxpool':
                    self.__setattr__(f'stage_{stage_id}_reduction',
                                     torch.nn.MaxPool1d(pool_volume))
                elif self.reduction_type == 'attention':
                    self.__setattr__(
                        f'stage_{stage_id}_reduction',
                        StageReductionAttBlock(dmodel_this_stage, pool_volume))
                else:
                    raise NotImplementedError

        self.num_shifts = [2] * stage_num
        self.output_shape = output_shape
        self.stage_num = stage_num
        self.set_info = set_info
        self.num_point_features = conv_out_channel

        self._reset_parameters()

    def forward(self, batch_dict):
        '''
        Args:
            bacth_dict (dict):
                The dict contains the following keys
                - voxel_features (Tensor[float]): Voxel features after VFE.
                    Shape of (N, dim_model[0]),
                    where N is the number of input voxels.
                - voxel_coords (Tensor[int]): Shape of (N, 4), corresponding
                    voxel coordinates of each voxels.
                    Each row is (batch_id, z, y, x).
                - ...

        Returns:
            bacth_dict (dict):
                The dict contains the following keys
                - pillar_features (Tensor[float]):
                - voxel_coords (Tensor[int]):
                - ...
        '''
        voxel_info = self.input_layer(batch_dict)

        voxel_feat = voxel_info['voxel_feats_stage0']
        set_voxel_inds_list = [[
            voxel_info[f'set_voxel_inds_stage{s}_shift{i}']
            for i in range(self.num_shifts[s])
        ] for s in range(self.stage_num)]
        set_voxel_masks_list = [[
            voxel_info[f'set_voxel_mask_stage{s}_shift{i}']
            for i in range(self.num_shifts[s])
        ] for s in range(self.stage_num)]
        pos_embed_list = [[[
            voxel_info[f'pos_embed_stage{s}_block{b}_shift{i}']
            for i in range(self.num_shifts[s])
        ] for b in range(self.set_info[s][1])] for s in range(self.stage_num)]
        pooling_mapping_index = [
            voxel_info[f'pooling_mapping_index_stage{s+1}']
            for s in range(self.stage_num - 1)
        ]
        pooling_index_in_pool = [
            voxel_info[f'pooling_index_in_pool_stage{s+1}']
            for s in range(self.stage_num - 1)
        ]
        pooling_preholder_feats = [
            voxel_info[f'pooling_preholder_feats_stage{s+1}']
            for s in range(self.stage_num - 1)
        ]

        output = voxel_feat
        block_id = 0
        for stage_id in range(self.stage_num):
            block_layers = self.__getattr__(f'stage_{stage_id}')
            residual_norm_layers = self.__getattr__(
                f'residual_norm_stage_{stage_id}')
            for i in range(len(block_layers)):
                block = block_layers[i]
                residual = output.clone()
                output = block(
                    output,
                    set_voxel_inds_list[stage_id],
                    set_voxel_masks_list[stage_id],
                    pos_embed_list[stage_id][i],
                    block_id=block_id)
                output = residual_norm_layers[i](output + residual)
                block_id += 1
            if stage_id < self.stage_num - 1:
                # pooling
                prepool_features = pooling_preholder_feats[stage_id].type_as(
                    output)
                pooled_voxel_num = prepool_features.shape[0]
                pool_volume = prepool_features.shape[1]
                prepool_features[pooling_mapping_index[stage_id],
                                 pooling_index_in_pool[stage_id]] = output
                prepool_features = prepool_features.view(
                    prepool_features.shape[0], -1)

                if self.reduction_type == 'linear':
                    output = self.__getattr__(f'stage_{stage_id}_reduction')(
                        prepool_features)
                elif self.reduction_type == 'maxpool':
                    prepool_features = prepool_features.view(
                        pooled_voxel_num, pool_volume, -1).permute(0, 2, 1)
                    output = self.__getattr__(f'stage_{stage_id}_reduction')(
                        prepool_features).squeeze(-1)
                elif self.reduction_type == 'attention':
                    prepool_features = prepool_features.view(
                        pooled_voxel_num, pool_volume, -1).permute(0, 2, 1)
                    key_padding_mask = torch.zeros(
                        (pooled_voxel_num,
                         pool_volume)).to(prepool_features.device).int()
                    output = self.__getattr__(f'stage_{stage_id}_reduction')(
                        prepool_features, key_padding_mask)
                else:
                    raise NotImplementedError

        batch_dict['pillar_features'] = batch_dict['voxel_features'] = output
        batch_dict['voxel_coords'] = voxel_info[
            f'voxel_coors_stage{self.stage_num - 1}']
        return batch_dict

    def _reset_parameters(self):
        for name, p in self.named_parameters():
            if p.dim() > 1 and 'scaler' not in name:
                nn.init.xavier_uniform_(p)


class DSVTBlock(nn.Module):
    """Consist of two encoder layer, shift and shift back."""

    def __init__(self,
                 dim_model,
                 nhead,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation='relu',
                 batch_first=True):
        super().__init__()

        encoder_1 = DSVTEncoderLayer(dim_model, nhead, dim_feedforward,
                                     dropout, activation, batch_first)
        encoder_2 = DSVTEncoderLayer(dim_model, nhead, dim_feedforward,
                                     dropout, activation, batch_first)
        self.encoder_list = nn.ModuleList([encoder_1, encoder_2])

    def forward(
        self,
        src,
        set_voxel_inds_list,
        set_voxel_masks_list,
        pos_embed_list,
        block_id,
    ):
        num_shifts = 2
        output = src
        for i in range(num_shifts):
            set_id = i
            shift_id = block_id % 2
            pos_embed_id = i
            set_voxel_inds = set_voxel_inds_list[shift_id][set_id]
            set_voxel_masks = set_voxel_masks_list[shift_id][set_id]
            pos_embed = pos_embed_list[pos_embed_id]
            layer = self.encoder_list[i]
            output = layer(output, set_voxel_inds, set_voxel_masks, pos_embed)

        return output


class DSVTEncoderLayer(nn.Module):

    def __init__(self,
                 dim_model,
                 nhead,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation='relu',
                 batch_first=True,
                 mlp_dropout=0):
        super().__init__()
        self.win_attn = SetAttention(dim_model, nhead, dropout,
                                     dim_feedforward, activation, batch_first,
                                     mlp_dropout)
        self.norm = nn.LayerNorm(dim_model)
        self.dim_model = dim_model

    def forward(self, src, set_voxel_inds, set_voxel_masks, pos=None):
        identity = src
        src = self.win_attn(src, pos, set_voxel_masks, set_voxel_inds)
        src = src + identity
        src = self.norm(src)

        return src


class SetAttention(nn.Module):

    def __init__(self,
                 dim_model,
                 nhead,
                 dropout,
                 dim_feedforward=2048,
                 activation='relu',
                 batch_first=True,
                 mlp_dropout=0):
        super().__init__()
        self.nhead = nhead
        if batch_first:
            self.self_attn = nn.MultiheadAttention(
                dim_model, nhead, dropout=dropout, batch_first=batch_first)
        else:
            self.self_attn = nn.MultiheadAttention(
                dim_model, nhead, dropout=dropout)

        # Implementation of Feedforward model
        self.linear1 = nn.Linear(dim_model, dim_feedforward)
        self.dropout = nn.Dropout(mlp_dropout)
        self.linear2 = nn.Linear(dim_feedforward, dim_model)
        self.dim_model = dim_model
        self.norm1 = nn.LayerNorm(dim_model)
        self.norm2 = nn.LayerNorm(dim_model)
        self.dropout1 = nn.Identity()
        self.dropout2 = nn.Identity()

        self.activation = _get_activation_fn(activation)

    def forward(self, src, pos=None, key_padding_mask=None, voxel_inds=None):
        '''
        Args:
            src (Tensor[float]): Voxel features with shape (N, C), where N is
                the number of voxels.
            pos (Tensor[float]): Position embedding vectors with shape (N, C).
            key_padding_mask (Tensor[bool]): Mask for redundant voxels
                within set. Shape of (set_num, set_size).
            voxel_inds (Tensor[int]): Voxel indices for each set.
                Shape of (set_num, set_size).
        Returns:
            src (Tensor[float]): Voxel features.
        '''
        set_features = src[voxel_inds]
        if pos is not None:
            set_pos = pos[voxel_inds]
        else:
            set_pos = None
        if pos is not None:
            query = set_features + set_pos
            key = set_features + set_pos
            value = set_features

        if key_padding_mask is not None:
            src2 = self.self_attn(query, key, value, key_padding_mask)[0]
        else:
            src2 = self.self_attn(query, key, value)[0]

        # map voxel features from set space to voxel space:
        # (set_num, set_size, C) --> (N, C)
        flatten_inds = voxel_inds.reshape(-1)
        unique_flatten_inds, inverse = torch.unique(
            flatten_inds, return_inverse=True)
        perm = torch.arange(
            inverse.size(0), dtype=inverse.dtype, device=inverse.device)
        inverse, perm = inverse.flip([0]), perm.flip([0])
        perm = inverse.new_empty(unique_flatten_inds.size(0)).scatter_(
            0, inverse, perm)
        src2 = src2.reshape(-1, self.dim_model)[perm]

        # FFN layer
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)

        return src


class StageReductionBlock(nn.Module):

    def __init__(self, input_channel, output_channel):
        super().__init__()
        self.linear1 = nn.Linear(input_channel, output_channel, bias=False)
        self.norm = nn.LayerNorm(output_channel)

    def forward(self, x):
        src = x
        src = self.norm(self.linear1(x))
        return src


class StageReductionAttBlock(nn.Module):

    def __init__(self, input_channel, pool_volume):
        super().__init__()
        self.pool_volume = pool_volume
        self.query_func = torch.nn.MaxPool1d(pool_volume)
        self.norm = nn.LayerNorm(input_channel)
        self.self_attn = nn.MultiheadAttention(
            input_channel, 8, batch_first=True)
        self.pos_embedding = nn.Parameter(
            torch.randn(pool_volume, input_channel))
        nn.init.normal_(self.pos_embedding, std=.01)

    def forward(self, x, key_padding_mask):
        # x: [voxel_num, c_dim, pool_volume]
        src = self.query_func(x).permute(0, 2, 1)  # voxel_num, 1, c_dim
        key = value = x.permute(0, 2, 1)
        key = key + self.pos_embedding.unsqueeze(0).repeat(src.shape[0], 1, 1)
        query = src.clone()
        output = self.self_attn(query, key, value, key_padding_mask)[0]
        src = self.norm(output + src).squeeze(1)
        return src


def _get_activation_fn(activation):
    """Return an activation function given a string."""
    if activation == 'relu':
        return torch.nn.functional.relu
    if activation == 'gelu':
        return torch.nn.functional.gelu
    if activation == 'glu':
        return torch.nn.functional.glu
    raise RuntimeError(F'activation should be relu/gelu, not {activation}.')