sparse_unet.py.a4045c791738bd571c7508cf4e033703.tmp 12 KB
Newer Older
ZwwWayne's avatar
ZwwWayne committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright (c) OpenMMLab. All rights reserved.
import torch

from mmdet3d.ops.spconv import IS_SPCONV2_AVAILABLE

if IS_SPCONV2_AVAILABLE:
    from spconv.pytorch import SparseConvTensor, SparseSequential
else:
    from mmcv.ops import SparseConvTensor, SparseSequential

from mmcv.runner import BaseModule, auto_fp16

from mmdet3d.ops import SparseBasicBlock, make_sparse_convmodule
from ..builder import MIDDLE_ENCODERS


@MIDDLE_ENCODERS.register_module()
class SparseUNet(BaseModule):
    r"""SparseUNet for PartA^2.

    See the `paper <https://arxiv.org/abs/1907.03670>`_ for more details.

    Args:
        in_channels (int): The number of input channels.
        sparse_shape (list[int]): The sparse shape of input tensor.
        norm_cfg (dict): Config of normalization layer.
        base_channels (int): Out channels for conv_input layer.
        output_channels (int): Out channels for conv_out layer.
        encoder_channels (tuple[tuple[int]]):
            Convolutional channels of each encode block.
        encoder_paddings (tuple[tuple[int]]): Paddings of each encode block.
        decoder_channels (tuple[tuple[int]]):
            Convolutional channels of each decode block.
        decoder_paddings (tuple[tuple[int]]): Paddings of each decode block.
    """

    def __init__(self,
                 in_channels,
                 sparse_shape,
                 order=('conv', 'norm', 'act'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 base_channels=16,
                 output_channels=128,
                 encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
                                                                        64)),
                 encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
                                                                 1)),
                 decoder_channels=((64, 64, 64), (64, 64, 32), (32, 32, 16),
                                   (16, 16, 16)),
                 decoder_paddings=((1, 0), (1, 0), (0, 0), (0, 1)),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.sparse_shape = sparse_shape
        self.in_channels = in_channels
        self.order = order
        self.base_channels = base_channels
        self.output_channels = output_channels
        self.encoder_channels = encoder_channels
        self.encoder_paddings = encoder_paddings
        self.decoder_channels = decoder_channels
        self.decoder_paddings = decoder_paddings
        self.stage_num = len(self.encoder_channels)
        self.fp16_enabled = False
        # Spconv init all weight on its own

        assert isinstance(order, tuple) and len(order) == 3
        assert set(order) == {'conv', 'norm', 'act'}

        if self.order[0] != 'conv':  # pre activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
                3,
                norm_cfg=norm_cfg,
                padding=1,
                indice_key='subm1',
                conv_type='SubMConv3d',
                order=('conv', ))
        else:  # post activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
                3,
                norm_cfg=norm_cfg,
                padding=1,
                indice_key='subm1',
                conv_type='SubMConv3d')

        encoder_out_channels = self.make_encoder_layers(
            make_sparse_convmodule, norm_cfg, self.base_channels)
        self.make_decoder_layers(make_sparse_convmodule, norm_cfg,
                                 encoder_out_channels)

        self.conv_out = make_sparse_convmodule(
            encoder_out_channels,
            self.output_channels,
            kernel_size=(3, 1, 1),
            stride=(2, 1, 1),
            norm_cfg=norm_cfg,
            padding=0,
            indice_key='spconv_down2',
            conv_type='SparseConv3d')

    @auto_fp16(apply_to=('voxel_features', ))
    def forward(self, voxel_features, coors, batch_size):
        """Forward of SparseUNet.

        Args:
            voxel_features (torch.float32): Voxel features in shape [N, C].
            coors (torch.int32): Coordinates in shape [N, 4],
                the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
            batch_size (int): Batch size.

        Returns:
            dict[str, torch.Tensor]: Backbone features.
        """
        coors = coors.int()
        input_sp_tensor = SparseConvTensor(voxel_features, coors,
                                           self.sparse_shape, batch_size)
        x = self.conv_input(input_sp_tensor)

        encode_features = []
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
            encode_features.append(x)

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
        out = self.conv_out(encode_features[-1])
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

        # for segmentation head, with output shape:
        # [400, 352, 11] <- [200, 176, 5]
        # [800, 704, 21] <- [400, 352, 11]
        # [1600, 1408, 41] <- [800, 704, 21]
        # [1600, 1408, 41] <- [1600, 1408, 41]
        decode_features = []
        x = encode_features[-1]
        for i in range(self.stage_num, 0, -1):
            x = self.decoder_layer_forward(encode_features[i - 1], x,
                                           getattr(self, f'lateral_layer{i}'),
                                           getattr(self, f'merge_layer{i}'),
                                           getattr(self, f'upsample_layer{i}'))
            decode_features.append(x)

        seg_features = decode_features[-1].features

        ret = dict(
            spatial_features=spatial_features, seg_features=seg_features)

        return ret

    def decoder_layer_forward(self, x_lateral, x_bottom, lateral_layer,
                              merge_layer, upsample_layer):
        """Forward of upsample and residual block.

        Args:
            x_lateral (:obj:`SparseConvTensor`): Lateral tensor.
            x_bottom (:obj:`SparseConvTensor`): Feature from bottom layer.
            lateral_layer (SparseBasicBlock): Convolution for lateral tensor.
            merge_layer (SparseSequential): Convolution for merging features.
            upsample_layer (SparseSequential): Convolution for upsampling.

        Returns:
            :obj:`SparseConvTensor`: Upsampled feature.
        """
        x = lateral_layer(x_lateral)
        if IS_SPCONV2_AVAILABLE:
            # TODO: try to clean this since it is for the compatibility 
            # between spconv 1.x & 2
            x = x.replace_feature(
                torch.cat((x_bottom.features, x.features), dim=1))
        else:
            x.features = torch.cat((x_bottom.features, x.features), dim=1)
        x_merge = merge_layer(x)
        x = self.reduce_channel(x, x_merge.features.shape[1])
        if IS_SPCONV2_AVAILABLE:
            # TODO: try to clean this since it is for the compatibility 
            # between spconv 1.x & 2
            x = x.replace_feature(x_merge.features + x.features)
        else:
            x.features = x_merge.features + x.features
        x = upsample_layer(x)
        return x

    @staticmethod
    def reduce_channel(x, out_channels):
        """reduce channel for element-wise addition.

        Args:
            x (:obj:`SparseConvTensor`): Sparse tensor, ``x.features``
                are in shape (N, C1).
            out_channels (int): The number of channel after reduction.

        Returns:
            :obj:`SparseConvTensor`: Channel reduced feature.
        """
        features = x.features
        n, in_channels = features.shape
        assert (in_channels % out_channels
                == 0) and (in_channels >= out_channels)
        x.features = features.view(n, out_channels, -1).sum(dim=2)
        return x

    def make_encoder_layers(self, make_block, norm_cfg, in_channels):
        """make encoder layers using sparse convs.

        Args:
            make_block (method): A bounded function to build blocks.
            norm_cfg (dict[str]): Config of normalization layer.
            in_channels (int): The number of encoder input channels.

        Returns:
            int: The number of encoder output channels.
        """
        self.encoder_layers = SparseSequential()

        for i, blocks in enumerate(self.encoder_channels):
            blocks_list = []
            for j, out_channels in enumerate(tuple(blocks)):
                padding = tuple(self.encoder_paddings[i])[j]
                # each stage started with a spconv layer
                # except the first stage
                if i != 0 and j == 0:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            stride=2,
                            padding=padding,
                            indice_key=f'spconv{i + 1}',
                            conv_type='SparseConv3d'))
                else:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            padding=padding,
                            indice_key=f'subm{i + 1}',
                            conv_type='SubMConv3d'))
                in_channels = out_channels
            stage_name = f'encoder_layer{i + 1}'
            stage_layers = SparseSequential(*blocks_list)
            self.encoder_layers.add_module(stage_name, stage_layers)
        return out_channels

    def make_decoder_layers(self, make_block, norm_cfg, in_channels):
        """make decoder layers using sparse convs.

        Args:
            make_block (method): A bounded function to build blocks.
            norm_cfg (dict[str]): Config of normalization layer.
            in_channels (int): The number of encoder input channels.

        Returns:
            int: The number of encoder output channels.
        """
        block_num = len(self.decoder_channels)
        for i, block_channels in enumerate(self.decoder_channels):
            paddings = self.decoder_paddings[i]
            setattr(
                self, f'lateral_layer{block_num - i}',
                SparseBasicBlock(
                    in_channels,
                    block_channels[0],
                    conv_cfg=dict(
                        type='SubMConv3d', indice_key=f'subm{block_num - i}'),
                    norm_cfg=norm_cfg))
            setattr(
                self, f'merge_layer{block_num - i}',
                make_block(
                    in_channels * 2,
                    block_channels[1],
                    3,
                    norm_cfg=norm_cfg,
                    padding=paddings[0],
                    indice_key=f'subm{block_num - i}',
                    conv_type='SubMConv3d'))
            if block_num - i != 1:
                setattr(
                    self, f'upsample_layer{block_num - i}',
                    make_block(
                        in_channels,
                        block_channels[2],
                        3,
                        norm_cfg=norm_cfg,
                        indice_key=f'spconv{block_num - i}',
                        conv_type='SparseInverseConv3d'))
            else:
                # use submanifold conv instead of inverse conv
                # in the last block
                setattr(
                    self, f'upsample_layer{block_num - i}',
                    make_block(
                        in_channels,
                        block_channels[2],
                        3,
                        norm_cfg=norm_cfg,
                        padding=paddings[1],
                        indice_key='subm1',
                        conv_type='SubMConv3d'))
            in_channels = block_channels[2]