voxelization_cpu.cpp 5.8 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
#include <ATen/TensorUtils.h>
2
#include <torch/extension.h>
zhangwenwei's avatar
zhangwenwei committed
3
4
5
6
7
// #include "voxelization.h"

namespace {

template <typename T, typename T_int>
8
void dynamic_voxelize_kernel(const torch::TensorAccessor<T, 2> points,
zhangwenwei's avatar
zhangwenwei committed
9
10
11
12
                             torch::TensorAccessor<T_int, 2> coors,
                             const std::vector<float> voxel_size,
                             const std::vector<float> coors_range,
                             const std::vector<int> grid_size,
13
14
                             const int num_points, const int num_features,
                             const int NDim) {
zhangwenwei's avatar
zhangwenwei committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
  const int ndim_minus_1 = NDim - 1;
  bool failed = false;
  int coor[NDim];
  int c;

  for (int i = 0; i < num_points; ++i) {
    failed = false;
    for (int j = 0; j < NDim; ++j) {
      c = floor((points[i][j] - coors_range[j]) / voxel_size[j]);
      // necessary to rm points out of range
      if ((c < 0 || c >= grid_size[j])) {
        failed = true;
        break;
      }
      coor[ndim_minus_1 - j] = c;
    }

    for (int k = 0; k < NDim; ++k) {
      if (failed)
        coors[i][k] = -1;
      else
        coors[i][k] = coor[k];
    }
  }

  return;
}

template <typename T, typename T_int>
44
45
46
47
48
49
void hard_voxelize_kernel(const torch::TensorAccessor<T, 2> points,
                          torch::TensorAccessor<T, 3> voxels,
                          torch::TensorAccessor<T_int, 2> coors,
                          torch::TensorAccessor<T_int, 1> num_points_per_voxel,
                          torch::TensorAccessor<T_int, 3> coor_to_voxelidx,
                          int& voxel_num, const std::vector<float> voxel_size,
zhangwenwei's avatar
zhangwenwei committed
50
51
                          const std::vector<float> coors_range,
                          const std::vector<int> grid_size,
52
53
54
                          const int max_points, const int max_voxels,
                          const int num_points, const int num_features,
                          const int NDim) {
zhangwenwei's avatar
zhangwenwei committed
55
  // declare a temp coors
56
57
  at::Tensor temp_coors = at::zeros(
      {num_points, NDim}, at::TensorOptions().dtype(at::kInt).device(at::kCPU));
zhangwenwei's avatar
zhangwenwei committed
58
59
60

  // First use dynamic voxelization to get coors,
  // then check max points/voxels constraints
61
62
63
  dynamic_voxelize_kernel<T, int>(points, temp_coors.accessor<int, 2>(),
                                  voxel_size, coors_range, grid_size,
                                  num_points, num_features, NDim);
zhangwenwei's avatar
zhangwenwei committed
64
65

  int voxelidx, num;
66
  auto coor = temp_coors.accessor<int, 2>();
zhangwenwei's avatar
zhangwenwei committed
67
68
69
70

  for (int i = 0; i < num_points; ++i) {
    // T_int* coor = temp_coors.data_ptr<int>() + i * NDim;

71
    if (coor[i][0] == -1) continue;
zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77

    voxelidx = coor_to_voxelidx[coor[i][0]][coor[i][1]][coor[i][2]];

    // record voxel
    if (voxelidx == -1) {
      voxelidx = voxel_num;
78
      if (max_voxels != -1 && voxel_num >= max_voxels) continue;
zhangwenwei's avatar
zhangwenwei committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
      voxel_num += 1;

      coor_to_voxelidx[coor[i][0]][coor[i][1]][coor[i][2]] = voxelidx;

      for (int k = 0; k < NDim; ++k) {
        coors[voxelidx][k] = coor[i][k];
      }
    }

    // put points into voxel
    num = num_points_per_voxel[voxelidx];
    if (max_points == -1 || num < max_points) {
      for (int k = 0; k < num_features; ++k) {
        voxels[voxelidx][num][k] = points[i][k];
      }
      num_points_per_voxel[voxelidx] += 1;
    }
  }

  return;
}

101
}  // namespace
zhangwenwei's avatar
zhangwenwei committed
102
103
104

namespace voxelization {

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
int hard_voxelize_cpu(const at::Tensor& points, at::Tensor& voxels,
                      at::Tensor& coors, at::Tensor& num_points_per_voxel,
                      const std::vector<float> voxel_size,
                      const std::vector<float> coors_range,
                      const int max_points, const int max_voxels,
                      const int NDim = 3) {
  // current version tooks about 0.02s_0.03s for one frame on cpu
  // check device
  AT_ASSERTM(points.device().is_cpu(), "points must be a CPU tensor");

  std::vector<int> grid_size(NDim);
  const int num_points = points.size(0);
  const int num_features = points.size(1);

  for (int i = 0; i < NDim; ++i) {
    grid_size[i] =
        round((coors_range[NDim + i] - coors_range[i]) / voxel_size[i]);
  }
zhangwenwei's avatar
zhangwenwei committed
123

124
125
126
127
128
  // coors, num_points_per_voxel, coor_to_voxelidx are int Tensor
  // printf("cpu coor_to_voxelidx size: [%d, %d, %d]\n", grid_size[2],
  // grid_size[1], grid_size[0]);
  at::Tensor coor_to_voxelidx =
      -at::ones({grid_size[2], grid_size[1], grid_size[0]}, coors.options());
zhangwenwei's avatar
zhangwenwei committed
129

130
131
132
  int voxel_num = 0;
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      points.scalar_type(), "hard_voxelize_forward", [&] {
zhangwenwei's avatar
zhangwenwei committed
133
        hard_voxelize_kernel<scalar_t, int>(
134
135
136
137
138
139
140
141
            points.accessor<scalar_t, 2>(), voxels.accessor<scalar_t, 3>(),
            coors.accessor<int, 2>(), num_points_per_voxel.accessor<int, 1>(),
            coor_to_voxelidx.accessor<int, 3>(), voxel_num, voxel_size,
            coors_range, grid_size, max_points, max_voxels, num_points,
            num_features, NDim);
      });

  return voxel_num;
zhangwenwei's avatar
zhangwenwei committed
142
143
}

144
145
146
147
148
149
void dynamic_voxelize_cpu(const at::Tensor& points, at::Tensor& coors,
                          const std::vector<float> voxel_size,
                          const std::vector<float> coors_range,
                          const int NDim = 3) {
  // check device
  AT_ASSERTM(points.device().is_cpu(), "points must be a CPU tensor");
zhangwenwei's avatar
zhangwenwei committed
150

151
152
153
  std::vector<int> grid_size(NDim);
  const int num_points = points.size(0);
  const int num_features = points.size(1);
zhangwenwei's avatar
zhangwenwei committed
154

155
156
157
158
  for (int i = 0; i < NDim; ++i) {
    grid_size[i] =
        round((coors_range[NDim + i] - coors_range[i]) / voxel_size[i]);
  }
zhangwenwei's avatar
zhangwenwei committed
159

160
161
162
  // coors, num_points_per_voxel, coor_to_voxelidx are int Tensor
  AT_DISPATCH_FLOATING_TYPES_AND_HALF(
      points.scalar_type(), "hard_voxelize_forward", [&] {
zhangwenwei's avatar
zhangwenwei committed
163
        dynamic_voxelize_kernel<scalar_t, int>(
164
165
166
            points.accessor<scalar_t, 2>(), coors.accessor<int, 2>(),
            voxel_size, coors_range, grid_size, num_points, num_features, NDim);
      });
zhangwenwei's avatar
zhangwenwei committed
167

168
  return;
zhangwenwei's avatar
zhangwenwei committed
169
}
170
171

}  // namespace voxelization