parta2.py 5.05 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
3
4
5
6
7
8
import torch
import torch.nn.functional as F

from mmdet3d.ops import Voxelization
from mmdet.models import DETECTORS, TwoStageDetector
from .. import builder


9
@DETECTORS.register_module()
wuyuefeng's avatar
wuyuefeng committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class PartA2(TwoStageDetector):

    def __init__(self,
                 voxel_layer,
                 voxel_encoder,
                 middle_encoder,
                 backbone,
                 neck=None,
                 rpn_head=None,
                 roi_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(PartA2, self).__init__(
            backbone=backbone,
            neck=neck,
            rpn_head=rpn_head,
            roi_head=roi_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            pretrained=pretrained,
        )
        self.voxel_layer = Voxelization(**voxel_layer)
        self.voxel_encoder = builder.build_voxel_encoder(voxel_encoder)
        self.middle_encoder = builder.build_middle_encoder(middle_encoder)

    def extract_feat(self, points, img_meta):
wuyuefeng's avatar
wuyuefeng committed
37
38
39
40
41
42
43
        voxel_dict = self.voxelize(points)
        voxel_features = self.voxel_encoder(voxel_dict['voxels'],
                                            voxel_dict['num_points'],
                                            voxel_dict['coors'])
        batch_size = voxel_dict['coors'][-1, 0].item() + 1
        feats_dict = self.middle_encoder(voxel_features, voxel_dict['coors'],
                                         batch_size)
wuyuefeng's avatar
wuyuefeng committed
44
45
46
47
48
49
50
51
        x = self.backbone(feats_dict['spatial_features'])
        if self.with_neck:
            neck_feats = self.neck(x)
            feats_dict.update({'neck_feats': neck_feats})
        return feats_dict, voxel_dict

    @torch.no_grad()
    def voxelize(self, points):
wuyuefeng's avatar
wuyuefeng committed
52
        voxels, coors, num_points, voxel_centers = [], [], [], []
wuyuefeng's avatar
wuyuefeng committed
53
54
        for res in points:
            res_voxels, res_coors, res_num_points = self.voxel_layer(res)
wuyuefeng's avatar
wuyuefeng committed
55
56
57
58
            res_voxel_centers = (
                res_coors[:, [2, 1, 0]] + 0.5) * res_voxels.new_tensor(
                    self.voxel_layer.voxel_size) + res_voxels.new_tensor(
                        self.voxel_layer.point_cloud_range[0:3])
wuyuefeng's avatar
wuyuefeng committed
59
60
61
            voxels.append(res_voxels)
            coors.append(res_coors)
            num_points.append(res_num_points)
wuyuefeng's avatar
wuyuefeng committed
62
63
            voxel_centers.append(res_voxel_centers)

wuyuefeng's avatar
wuyuefeng committed
64
65
        voxels = torch.cat(voxels, dim=0)
        num_points = torch.cat(num_points, dim=0)
wuyuefeng's avatar
wuyuefeng committed
66
        voxel_centers = torch.cat(voxel_centers, dim=0)
wuyuefeng's avatar
wuyuefeng committed
67
68
69
70
71
        coors_batch = []
        for i, coor in enumerate(coors):
            coor_pad = F.pad(coor, (1, 0), mode='constant', value=i)
            coors_batch.append(coor_pad)
        coors_batch = torch.cat(coors_batch, dim=0)
wuyuefeng's avatar
wuyuefeng committed
72
73
74
75
76
77
78

        voxel_dict = dict(
            voxels=voxels,
            num_points=num_points,
            coors=coors_batch,
            voxel_centers=voxel_centers)
        return voxel_dict
wuyuefeng's avatar
wuyuefeng committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

    def forward_train(self,
                      points,
                      img_meta,
                      gt_bboxes_3d,
                      gt_labels_3d,
                      gt_bboxes_ignore=None,
                      proposals=None):
        feats_dict, voxels_dict = self.extract_feat(points, img_meta)

        losses = dict()

        if self.with_rpn:
            rpn_outs = self.rpn_head(feats_dict['neck_feats'])
            rpn_loss_inputs = rpn_outs + (gt_bboxes_3d, gt_labels_3d, img_meta)
            rpn_losses = self.rpn_head.loss(
                *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
            losses.update(rpn_losses)

            proposal_cfg = self.train_cfg.get('rpn_proposal',
                                              self.test_cfg.rpn)
            proposal_inputs = rpn_outs + (img_meta, proposal_cfg)
            proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
        else:
wuyuefeng's avatar
wuyuefeng committed
103
104
105
106
107
108
109
            proposal_list = proposals

        roi_losses = self.roi_head.forward_train(feats_dict, voxels_dict,
                                                 img_meta, proposal_list,
                                                 gt_bboxes_3d, gt_labels_3d)

        losses.update(roi_losses)
wuyuefeng's avatar
wuyuefeng committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

        return losses

    def forward_test(self, **kwargs):
        return self.simple_test(**kwargs)

    def forward(self, return_loss=True, **kwargs):
        if return_loss:
            return self.forward_train(**kwargs)
        else:
            return self.forward_test(**kwargs)

    def simple_test(self,
                    points,
                    img_meta,
wuyuefeng's avatar
wuyuefeng committed
125
                    gt_bboxes_3d,
wuyuefeng's avatar
wuyuefeng committed
126
127
128
                    proposals=None,
                    rescale=False):
        feats_dict, voxels_dict = self.extract_feat(points, img_meta)
wuyuefeng's avatar
wuyuefeng committed
129
130
131
132
133
134

        if self.with_rpn:
            rpn_outs = self.rpn_head(feats_dict['neck_feats'])
            proposal_cfg = self.test_cfg.rpn
            bbox_inputs = rpn_outs + (img_meta, proposal_cfg)
            proposal_list = self.rpn_head.get_bboxes(*bbox_inputs)
wuyuefeng's avatar
wuyuefeng committed
135
136
137
        else:
            proposal_list = proposals

wuyuefeng's avatar
wuyuefeng committed
138
139
        return self.roi_head.simple_test(feats_dict, voxels_dict, img_meta,
                                         proposal_list)