parta2.py 7.02 KB
Newer Older
1
2
3
4
5
6
# model settings
voxel_size = [0.05, 0.05, 0.1]
point_cloud_range = [0, -40, -3, 70.4, 40, 1]

model = dict(
    type='PartA2',
7
8
9
10
11
12
13
14
    data_preprocessor=dict(
        type='Det3DDataPreprocessor',
        voxel=True,
        voxel_layer=dict(
            max_num_points=5,  # max_points_per_voxel
            point_cloud_range=point_cloud_range,
            voxel_size=voxel_size,
            max_voxels=(16000, 40000))),
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
    voxel_encoder=dict(type='HardSimpleVFE'),
    middle_encoder=dict(
        type='SparseUNet',
        in_channels=4,
        sparse_shape=[41, 1600, 1408],
        order=('conv', 'norm', 'act')),
    backbone=dict(
        type='SECOND',
        in_channels=256,
        layer_nums=[5, 5],
        layer_strides=[1, 2],
        out_channels=[128, 256]),
    neck=dict(
        type='SECONDFPN',
        in_channels=[128, 256],
        upsample_strides=[1, 2],
        out_channels=[256, 256]),
    rpn_head=dict(
        type='PartA2RPNHead',
        num_classes=3,
        in_channels=512,
        feat_channels=512,
        use_direction_classifier=True,
        anchor_generator=dict(
            type='Anchor3DRangeGenerator',
            ranges=[[0, -40.0, -0.6, 70.4, 40.0, -0.6],
                    [0, -40.0, -0.6, 70.4, 40.0, -0.6],
                    [0, -40.0, -1.78, 70.4, 40.0, -1.78]],
43
            sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
44
45
46
47
48
49
50
            rotations=[0, 1.57],
            reshape_out=False),
        diff_rad_by_sin=True,
        assigner_per_size=True,
        assign_per_class=True,
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
        loss_cls=dict(
51
            type='mmdet.FocalLoss',
52
53
54
55
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
56
57
        loss_bbox=dict(
            type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
58
        loss_dir=dict(
59
60
            type='mmdet.CrossEntropyLoss', use_sigmoid=False,
            loss_weight=0.2)),
61
62
63
64
65
66
67
68
69
70
    roi_head=dict(
        type='PartAggregationROIHead',
        num_classes=3,
        semantic_head=dict(
            type='PointwiseSemanticHead',
            in_channels=16,
            extra_width=0.2,
            seg_score_thr=0.3,
            num_classes=3,
            loss_seg=dict(
71
                type='mmdet.FocalLoss',
72
73
74
75
76
77
                use_sigmoid=True,
                reduction='sum',
                gamma=2.0,
                alpha=0.25,
                loss_weight=1.0),
            loss_part=dict(
78
79
80
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=True,
                loss_weight=1.0)),
81
82
83
84
85
86
87
        seg_roi_extractor=dict(
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='max')),
88
        bbox_roi_extractor=dict(
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='avg')),
        bbox_head=dict(
            type='PartA2BboxHead',
            num_classes=3,
            seg_in_channels=16,
            part_in_channels=4,
            seg_conv_channels=[64, 64],
            part_conv_channels=[64, 64],
            merge_conv_channels=[128, 128],
            down_conv_channels=[128, 256],
            bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
            shared_fc_channels=[256, 512, 512, 512],
            cls_channels=[256, 256],
            reg_channels=[256, 256],
            dropout_ratio=0.1,
            roi_feat_size=14,
            with_corner_loss=True,
            loss_bbox=dict(
112
                type='mmdet.SmoothL1Loss',
113
114
115
116
                beta=1.0 / 9.0,
                reduction='sum',
                loss_weight=1.0),
            loss_cls=dict(
117
                type='mmdet.CrossEntropyLoss',
118
119
120
121
122
123
124
125
                use_sigmoid=True,
                reduction='sum',
                loss_weight=1.0))),
    # model training and testing settings
    train_cfg=dict(
        rpn=dict(
            assigner=[
                dict(  # for Pedestrian
126
                    type='Max3DIoUAssigner',
127
128
129
130
131
132
                    iou_calculator=dict(type='BboxOverlapsNearest3D'),
                    pos_iou_thr=0.5,
                    neg_iou_thr=0.35,
                    min_pos_iou=0.35,
                    ignore_iof_thr=-1),
                dict(  # for Cyclist
133
                    type='Max3DIoUAssigner',
134
135
136
137
138
139
                    iou_calculator=dict(type='BboxOverlapsNearest3D'),
                    pos_iou_thr=0.5,
                    neg_iou_thr=0.35,
                    min_pos_iou=0.35,
                    ignore_iof_thr=-1),
                dict(  # for Car
140
                    type='Max3DIoUAssigner',
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
                    iou_calculator=dict(type='BboxOverlapsNearest3D'),
                    pos_iou_thr=0.6,
                    neg_iou_thr=0.45,
                    min_pos_iou=0.45,
                    ignore_iof_thr=-1)
            ],
            allowed_border=0,
            pos_weight=-1,
            debug=False),
        rpn_proposal=dict(
            nms_pre=9000,
            nms_post=512,
            max_num=512,
            nms_thr=0.8,
            score_thr=0,
            use_rotate_nms=False),
        rcnn=dict(
            assigner=[
                dict(  # for Pedestrian
160
                    type='Max3DIoUAssigner',
161
162
163
164
165
166
167
                    iou_calculator=dict(
                        type='BboxOverlaps3D', coordinate='lidar'),
                    pos_iou_thr=0.55,
                    neg_iou_thr=0.55,
                    min_pos_iou=0.55,
                    ignore_iof_thr=-1),
                dict(  # for Cyclist
168
                    type='Max3DIoUAssigner',
169
170
171
172
173
174
175
                    iou_calculator=dict(
                        type='BboxOverlaps3D', coordinate='lidar'),
                    pos_iou_thr=0.55,
                    neg_iou_thr=0.55,
                    min_pos_iou=0.55,
                    ignore_iof_thr=-1),
                dict(  # for Car
176
                    type='Max3DIoUAssigner',
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
                    iou_calculator=dict(
                        type='BboxOverlaps3D', coordinate='lidar'),
                    pos_iou_thr=0.55,
                    neg_iou_thr=0.55,
                    min_pos_iou=0.55,
                    ignore_iof_thr=-1)
            ],
            sampler=dict(
                type='IoUNegPiecewiseSampler',
                num=128,
                pos_fraction=0.55,
                neg_piece_fractions=[0.8, 0.2],
                neg_iou_piece_thrs=[0.55, 0.1],
                neg_pos_ub=-1,
                add_gt_as_proposals=False,
                return_iou=True),
            cls_pos_thr=0.75,
            cls_neg_thr=0.25)),
    test_cfg=dict(
        rpn=dict(
            nms_pre=1024,
            nms_post=100,
            max_num=100,
            nms_thr=0.7,
            score_thr=0,
            use_rotate_nms=True),
        rcnn=dict(
            use_rotate_nms=True,
            use_raw_score=True,
            nms_thr=0.01,
            score_thr=0.1)))