point_sa_module.py 8.35 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
import torch
from mmcv.cnn import ConvModule
zhangwenwei's avatar
zhangwenwei committed
3
4
5
from torch import nn as nn
from torch.nn import functional as F
from typing import List
wuyuefeng's avatar
wuyuefeng committed
6

7
from mmdet3d.ops import GroupAll, Points_Sampler, QueryAndGroup, gather_points
8
from .registry import SA_MODULES
wuyuefeng's avatar
wuyuefeng committed
9
10


11
@SA_MODULES.register_module()
wuyuefeng's avatar
wuyuefeng committed
12
class PointSAModuleMSG(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
13
14
    """Point set abstraction module with multi-scale grouping used in
    Pointnets.
wuyuefeng's avatar
wuyuefeng committed
15
16
17
18
19
20
21

    Args:
        num_point (int): Number of points.
        radii (list[float]): List of radius in each ball query.
        sample_nums (list[int]): Number of samples in each ball query.
        mlp_channels (list[int]): Specify of the pointnet before
            the global pooling for each scale.
22
23
24
25
26
27
28
        fps_mod (list[str]: Type of FPS method, valid mod
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
            F-FPS: using feature distances for FPS.
            D-FPS: using Euclidean distances of points for FPS.
            FS: using F-FPS and D-FPS simultaneously.
        fps_sample_range_list (list[int]): Range of points to apply FPS.
            Default: [-1].
wuyuefeng's avatar
wuyuefeng committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
        norm_cfg (dict): Type of normalization method.
            Default: dict(type='BN2d').
        use_xyz (bool): Whether to use xyz.
            Default: True.
        pool_mod (str): Type of pooling method.
            Default: 'max_pool'.
        normalize_xyz (bool): Whether to normalize local XYZ with radius.
            Default: False.
    """

    def __init__(self,
                 num_point: int,
                 radii: List[float],
                 sample_nums: List[int],
                 mlp_channels: List[List[int]],
44
45
                 fps_mod: List[str] = ['D-FPS'],
                 fps_sample_range_list: List[int] = [-1],
wuyuefeng's avatar
wuyuefeng committed
46
47
48
                 norm_cfg: dict = dict(type='BN2d'),
                 use_xyz: bool = True,
                 pool_mod='max',
49
50
                 normalize_xyz: bool = False,
                 bias='auto'):
wuyuefeng's avatar
wuyuefeng committed
51
52
53
54
        super().__init__()

        assert len(radii) == len(sample_nums) == len(mlp_channels)
        assert pool_mod in ['max', 'avg']
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        assert isinstance(fps_mod, list) or isinstance(fps_mod, tuple)
        assert isinstance(fps_sample_range_list, list) or isinstance(
            fps_sample_range_list, tuple)
        assert len(fps_mod) == len(fps_sample_range_list)

        if isinstance(mlp_channels, tuple):
            mlp_channels = list(map(list, mlp_channels))

        if isinstance(num_point, int):
            self.num_point = [num_point]
        elif isinstance(num_point, list) or isinstance(num_point, tuple):
            self.num_point = num_point
        else:
            raise NotImplementedError('Error type of num_point!')
wuyuefeng's avatar
wuyuefeng committed
69
70
71
72

        self.pool_mod = pool_mod
        self.groupers = nn.ModuleList()
        self.mlps = nn.ModuleList()
73
74
75
76
77
        self.fps_mod_list = fps_mod
        self.fps_sample_range_list = fps_sample_range_list

        self.points_sampler = Points_Sampler(self.num_point, self.fps_mod_list,
                                             self.fps_sample_range_list)
wuyuefeng's avatar
wuyuefeng committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

        for i in range(len(radii)):
            radius = radii[i]
            sample_num = sample_nums[i]
            if num_point is not None:
                grouper = QueryAndGroup(
                    radius,
                    sample_num,
                    use_xyz=use_xyz,
                    normalize_xyz=normalize_xyz)
            else:
                grouper = GroupAll(use_xyz)
            self.groupers.append(grouper)

            mlp_spec = mlp_channels[i]
            if use_xyz:
                mlp_spec[0] += 3

            mlp = nn.Sequential()
            for i in range(len(mlp_spec) - 1):
                mlp.add_module(
                    f'layer{i}',
                    ConvModule(
                        mlp_spec[i],
                        mlp_spec[i + 1],
                        kernel_size=(1, 1),
                        stride=(1, 1),
                        conv_cfg=dict(type='Conv2d'),
106
107
                        norm_cfg=norm_cfg,
                        bias=bias))
wuyuefeng's avatar
wuyuefeng committed
108
109
110
111
112
113
            self.mlps.append(mlp)

    def forward(
        self,
        points_xyz: torch.Tensor,
        features: torch.Tensor = None,
114
115
116
        indices: torch.Tensor = None,
        target_xyz: torch.Tensor = None,
    ) -> (torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor):
wuyuefeng's avatar
wuyuefeng committed
117
118
119
120
121
122
123
124
        """forward.

        Args:
            points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
            features (Tensor): (B, C, N) features of each point.
                Default: None.
            indices (Tensor): (B, num_point) Index of the features.
                Default: None.
125
            target_xyz (Tensor): (B, M, 3) new_xyz coordinates of the outputs.
wuyuefeng's avatar
wuyuefeng committed
126
127
128
129
130
131
132
133
134
135
136
137

        Returns:
            Tensor: (B, M, 3) where M is the number of points.
                New features xyz.
            Tensor: (B, M, sum_k(mlps[k][-1])) where M is the number
                of points. New feature descriptors.
            Tensor: (B, M) where M is the number of points.
                Index of the features.
        """
        new_features_list = []
        xyz_flipped = points_xyz.transpose(1, 2).contiguous()

138
139
140
141
142
143
144
145
146
147
        if indices is not None:
            assert (indices.shape[1] == self.num_point[0])
            new_xyz = gather_points(xyz_flipped, indices).transpose(
                1, 2).contiguous() if self.num_point is not None else None
        elif target_xyz is not None:
            new_xyz = target_xyz.contiguous()
        else:
            indices = self.points_sampler(points_xyz, features)
            new_xyz = gather_points(xyz_flipped, indices).transpose(
                1, 2).contiguous() if self.num_point is not None else None
wuyuefeng's avatar
wuyuefeng committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171

        for i in range(len(self.groupers)):
            # (B, C, num_point, nsample)
            new_features = self.groupers[i](points_xyz, new_xyz, features)

            # (B, mlp[-1], num_point, nsample)
            new_features = self.mlps[i](new_features)
            if self.pool_mod == 'max':
                # (B, mlp[-1], num_point, 1)
                new_features = F.max_pool2d(
                    new_features, kernel_size=[1, new_features.size(3)])
            elif self.pool_mod == 'avg':
                # (B, mlp[-1], num_point, 1)
                new_features = F.avg_pool2d(
                    new_features, kernel_size=[1, new_features.size(3)])
            else:
                raise NotImplementedError

            new_features = new_features.squeeze(-1)  # (B, mlp[-1], num_point)
            new_features_list.append(new_features)

        return new_xyz, torch.cat(new_features_list, dim=1), indices


172
@SA_MODULES.register_module()
wuyuefeng's avatar
wuyuefeng committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
class PointSAModule(PointSAModuleMSG):
    """Point set abstraction module used in Pointnets.

    Args:
        mlp_channels (list[int]): Specify of the pointnet before
            the global pooling for each scale.
        num_point (int): Number of points.
            Default: None.
        radius (float): Radius to group with.
            Default: None.
        num_sample (int): Number of samples in each ball query.
            Default: None.
        norm_cfg (dict): Type of normalization method.
            Default: dict(type='BN2d').
        use_xyz (bool): Whether to use xyz.
            Default: True.
        pool_mod (str): Type of pooling method.
            Default: 'max_pool'.
191
192
193
194
        fps_mod (list[str]: Type of FPS method, valid mod
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
        fps_sample_range_list (list[int]): Range of points to apply FPS.
            Default: [-1].
wuyuefeng's avatar
wuyuefeng committed
195
196
197
198
199
200
201
202
203
204
205
206
        normalize_xyz (bool): Whether to normalize local XYZ with radius.
            Default: False.
    """

    def __init__(self,
                 mlp_channels: List[int],
                 num_point: int = None,
                 radius: float = None,
                 num_sample: int = None,
                 norm_cfg: dict = dict(type='BN2d'),
                 use_xyz: bool = True,
                 pool_mod: str = 'max',
207
208
                 fps_mod: List[str] = ['D-FPS'],
                 fps_sample_range_list: List[int] = [-1],
wuyuefeng's avatar
wuyuefeng committed
209
210
211
212
213
214
215
216
217
                 normalize_xyz: bool = False):
        super().__init__(
            mlp_channels=[mlp_channels],
            num_point=num_point,
            radii=[radius],
            sample_nums=[num_sample],
            norm_cfg=norm_cfg,
            use_xyz=use_xyz,
            pool_mod=pool_mod,
218
219
            fps_mod=fps_mod,
            fps_sample_range_list=fps_sample_range_list,
wuyuefeng's avatar
wuyuefeng committed
220
            normalize_xyz=normalize_xyz)