pointnet2_sa_ssg.py 5.15 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
import torch
zhangwenwei's avatar
zhangwenwei committed
2
from torch import nn as nn
wuyuefeng's avatar
wuyuefeng committed
3

4
from mmdet3d.ops import PointFPModule, build_sa_module
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet.models import BACKBONES
6
from .base_pointnet import BasePointNet
wuyuefeng's avatar
wuyuefeng committed
7
8
9


@BACKBONES.register_module()
10
class PointNet2SASSG(BasePointNet):
wuyuefeng's avatar
wuyuefeng committed
11
    """PointNet2 with Single-scale grouping.
wuyuefeng's avatar
wuyuefeng committed
12
13

    Args:
wangtai's avatar
wangtai committed
14
15
        in_channels (int): Input channels of point cloud.
        num_points (tuple[int]): The number of points which each SA
wuyuefeng's avatar
wuyuefeng committed
16
            module samples.
wangtai's avatar
wangtai committed
17
18
        radius (tuple[float]): Sampling radii of each SA module.
        num_samples (tuple[int]): The number of samples for ball
wuyuefeng's avatar
wuyuefeng committed
19
            query in each SA module.
wangtai's avatar
wangtai committed
20
21
22
        sa_channels (tuple[tuple[int]]): Out channels of each mlp in SA module.
        fp_channels (tuple[tuple[int]]): Out channels of each mlp in FP module.
        norm_cfg (dict): Config of normalization layer.
23
24
25
26
27
28
29
        sa_cfg (dict): Config of set abstraction module, which may contain
            the following keys and values:

            - pool_mod (str): Pool method ('max' or 'avg') for SA modules.
            - use_xyz (bool): Whether to use xyz as a part of features.
            - normalize_xyz (bool): Whether to normalize xyz with radii in
              each SA module.
wuyuefeng's avatar
wuyuefeng committed
30
31
32
33
34
35
36
37
38
39
40
    """

    def __init__(self,
                 in_channels,
                 num_points=(2048, 1024, 512, 256),
                 radius=(0.2, 0.4, 0.8, 1.2),
                 num_samples=(64, 32, 16, 16),
                 sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
                              (128, 128, 256)),
                 fp_channels=((256, 256), (256, 256)),
                 norm_cfg=dict(type='BN2d'),
41
42
43
44
45
                 sa_cfg=dict(
                     type='PointSAModule',
                     pool_mod='max',
                     use_xyz=True,
                     normalize_xyz=True)):
wuyuefeng's avatar
wuyuefeng committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        super().__init__()
        self.num_sa = len(sa_channels)
        self.num_fp = len(fp_channels)

        assert len(num_points) == len(radius) == len(num_samples) == len(
            sa_channels)
        assert len(sa_channels) >= len(fp_channels)

        self.SA_modules = nn.ModuleList()
        sa_in_channel = in_channels - 3  # number of channels without xyz
        skip_channel_list = [sa_in_channel]

        for sa_index in range(self.num_sa):
            cur_sa_mlps = list(sa_channels[sa_index])
            cur_sa_mlps = [sa_in_channel] + cur_sa_mlps
            sa_out_channel = cur_sa_mlps[-1]

            self.SA_modules.append(
64
                build_sa_module(
wuyuefeng's avatar
wuyuefeng committed
65
66
67
68
69
                    num_point=num_points[sa_index],
                    radius=radius[sa_index],
                    num_sample=num_samples[sa_index],
                    mlp_channels=cur_sa_mlps,
                    norm_cfg=norm_cfg,
70
                    cfg=sa_cfg))
wuyuefeng's avatar
wuyuefeng committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
            skip_channel_list.append(sa_out_channel)
            sa_in_channel = sa_out_channel

        self.FP_modules = nn.ModuleList()

        fp_source_channel = skip_channel_list.pop()
        fp_target_channel = skip_channel_list.pop()
        for fp_index in range(len(fp_channels)):
            cur_fp_mlps = list(fp_channels[fp_index])
            cur_fp_mlps = [fp_source_channel + fp_target_channel] + cur_fp_mlps
            self.FP_modules.append(PointFPModule(mlp_channels=cur_fp_mlps))
            if fp_index != len(fp_channels) - 1:
                fp_source_channel = cur_fp_mlps[-1]
                fp_target_channel = skip_channel_list.pop()

    def forward(self, points):
        """Forward pass.

        Args:
90
            points (torch.Tensor): point coordinates with features,
wuyuefeng's avatar
wuyuefeng committed
91
92
93
                with shape (B, N, 3 + input_feature_dim).

        Returns:
wangtai's avatar
wangtai committed
94
            dict[str, list[torch.Tensor]]: Outputs after SA and FP modules.
95

wangtai's avatar
wangtai committed
96
                - fp_xyz (list[torch.Tensor]): The coordinates of \
wuyuefeng's avatar
wuyuefeng committed
97
                    each fp features.
wangtai's avatar
wangtai committed
98
                - fp_features (list[torch.Tensor]): The features \
wuyuefeng's avatar
wuyuefeng committed
99
                    from each Feature Propagate Layers.
wangtai's avatar
wangtai committed
100
                - fp_indices (list[torch.Tensor]): Indices of the \
wuyuefeng's avatar
wuyuefeng committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
                    input points.
        """
        xyz, features = self._split_point_feats(points)

        batch, num_points = xyz.shape[:2]
        indices = xyz.new_tensor(range(num_points)).unsqueeze(0).repeat(
            batch, 1).long()

        sa_xyz = [xyz]
        sa_features = [features]
        sa_indices = [indices]

        for i in range(self.num_sa):
            cur_xyz, cur_features, cur_indices = self.SA_modules[i](
                sa_xyz[i], sa_features[i])
            sa_xyz.append(cur_xyz)
            sa_features.append(cur_features)
            sa_indices.append(
                torch.gather(sa_indices[-1], 1, cur_indices.long()))

        fp_xyz = [sa_xyz[-1]]
        fp_features = [sa_features[-1]]
        fp_indices = [sa_indices[-1]]

        for i in range(self.num_fp):
            fp_features.append(self.FP_modules[i](
                sa_xyz[self.num_sa - i - 1], sa_xyz[self.num_sa - i],
                sa_features[self.num_sa - i - 1], fp_features[-1]))
            fp_xyz.append(sa_xyz[self.num_sa - i - 1])
            fp_indices.append(sa_indices[self.num_sa - i - 1])

        ret = dict(
            fp_xyz=fp_xyz, fp_features=fp_features, fp_indices=fp_indices)
        return ret