open3d_vis.py 19.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import cv2
import numpy as np
import open3d as o3d
import torch
from matplotlib import pyplot as plt
from open3d import geometry


def _draw_points(points,
                 vis,
                 points_size=2,
                 point_color=(0.5, 0.5, 0.5),
                 mode='xyz'):
    """Draw points on visualizer.

    Args:
        points (numpy.array | torch.tensor, shape=[N, 3+C]):
            points to visualize.
        vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer.
        points_size (int): the size of points to show on visualizer.
            Default: 2.
        point_color (tuple[float]): the color of points.
            Default: (0.5, 0.5, 0.5).
        mode (str):  indicate type of the input points, avaliable mode
            ['xyz', 'xyzrgb']. Default: 'xyz'.

    Returns:
        tuple: points, color of each point.
    """
    vis.get_render_option().point_size = points_size  # set points size
    if isinstance(points, torch.Tensor):
        points = points.cpu().numpy()

    points = points.copy()
    pcd = geometry.PointCloud()
    if mode == 'xyz':
        pcd.points = o3d.utility.Vector3dVector(points[:, :3])
        points_colors = np.tile(np.array(point_color), (points.shape[0], 1))
    elif mode == 'xyzrgb':
        pcd.points = o3d.utility.Vector3dVector(points[:, :3])
        points_colors = points[:, 3:6]
    else:
        raise NotImplementedError

    pcd.colors = o3d.utility.Vector3dVector(points_colors)
    vis.add_geometry(pcd)

    return pcd, points_colors


def _draw_bboxes(bbox3d,
                 vis,
                 points_colors,
                 pcd=None,
                 bbox_color=(0, 1, 0),
                 points_in_box_color=(1, 0, 0),
                 rot_axis=2,
                 center_mode='lidar_bottom',
                 mode='xyz'):
    """Draw bbox on visualizer and change the color of points inside bbox3d.

    Args:
        bbox3d (numpy.array | torch.tensor, shape=[M, 7]):
            3d bbox (x, y, z, dx, dy, dz, yaw) to visualize.
        vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer.
        points_colors (numpy.array): color of each points.
        pcd (:obj:`open3d.geometry.PointCloud`): point cloud. Default: None.
        bbox_color (tuple[float]): the color of bbox. Default: (0, 1, 0).
        points_in_box_color (tuple[float]):
            the color of points inside bbox3d. Default: (1, 0, 0).
        rot_axis (int): rotation axis of bbox. Default: 2.
        center_mode (bool): indicate the center of bbox is bottom center
            or gravity center. avaliable mode
            ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
        mode (str):  indicate type of the input points, avaliable mode
            ['xyz', 'xyzrgb']. Default: 'xyz'.
    """
    if isinstance(bbox3d, torch.Tensor):
        bbox3d = bbox3d.cpu().numpy()
    bbox3d = bbox3d.copy()

    in_box_color = np.array(points_in_box_color)
    for i in range(len(bbox3d)):
        center = bbox3d[i, 0:3]
        dim = bbox3d[i, 3:6]
        yaw = np.zeros(3)
        yaw[rot_axis] = -bbox3d[i, 6]
        rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)

        if center_mode == 'lidar_bottom':
            center[rot_axis] += dim[
                rot_axis] / 2  # bottom center to gravity center
        elif center_mode == 'camera_bottom':
            center[rot_axis] -= dim[
                rot_axis] / 2  # bottom center to gravity center
        box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)

        line_set = geometry.LineSet.create_from_oriented_bounding_box(box3d)
        line_set.paint_uniform_color(bbox_color)
        # draw bboxes on visualizer
        vis.add_geometry(line_set)

        # change the color of points which are in box
        if pcd is not None and mode == 'xyz':
            indices = box3d.get_point_indices_within_bounding_box(pcd.points)
            points_colors[indices] = in_box_color

    # update points colors
    if pcd is not None:
        pcd.colors = o3d.utility.Vector3dVector(points_colors)
        vis.update_geometry(pcd)


def show_pts_boxes(points,
                   bbox3d=None,
                   show=True,
                   save_path=None,
                   points_size=2,
                   point_color=(0.5, 0.5, 0.5),
                   bbox_color=(0, 1, 0),
                   points_in_box_color=(1, 0, 0),
                   rot_axis=2,
                   center_mode='lidar_bottom',
                   mode='xyz'):
    """Draw bbox and points on visualizer.

    Args:
        points (numpy.array | torch.tensor, shape=[N, 3+C]):
            points to visualize.
        bbox3d (numpy.array | torch.tensor, shape=[M, 7]):
            3d bbox (x, y, z, dx, dy, dz, yaw) to visualize. Default: None.
        show (bool): whether to show the visualization results. Default: True.
        save_path (str): path to save visualized results. Default: None.
        points_size (int): the size of points to show on visualizer.
            Default: 2.
        point_color (tuple[float]): the color of points.
            Default: (0.5, 0.5, 0.5).
        bbox_color (tuple[float]): the color of bbox. Default: (0, 1, 0).
        points_in_box_color (tuple[float]):
            the color of points which are in bbox3d. Default: (1, 0, 0).
        rot_axis (int): rotation axis of bbox. Default: 2.
        center_mode (bool): indicate the center of bbox is bottom center
            or gravity center. avaliable mode
            ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
        mode (str):  indicate type of the input points, avaliable mode
            ['xyz', 'xyzrgb']. Default: 'xyz'.
    """
    # TODO: support score and class info
    assert 0 <= rot_axis <= 2

    # init visualizer
    vis = o3d.visualization.Visualizer()
    vis.create_window()
    mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
        size=1, origin=[0, 0, 0])  # create coordinate frame
    vis.add_geometry(mesh_frame)

    # draw points
    pcd, points_colors = _draw_points(points, vis, points_size, point_color,
                                      mode)

    # draw boxes
    if bbox3d is not None:
        _draw_bboxes(bbox3d, vis, points_colors, pcd, bbox_color,
                     points_in_box_color, rot_axis, center_mode, mode)

    if show:
        vis.run()

    if save_path is not None:
        vis.capture_screen_image(save_path)

    vis.destroy_window()


def _draw_bboxes_ind(bbox3d,
                     vis,
                     indices,
                     points_colors,
                     pcd=None,
                     bbox_color=(0, 1, 0),
                     points_in_box_color=(1, 0, 0),
                     rot_axis=2,
                     center_mode='lidar_bottom',
                     mode='xyz'):
    """Draw bbox on visualizer and change the color or points inside bbox3d
    with indices.

    Args:
        bbox3d (numpy.array | torch.tensor, shape=[M, 7]):
            3d bbox (x, y, z, dx, dy, dz, yaw) to visualize.
        vis (:obj:`open3d.visualization.Visualizer`): open3d visualizer.
        indices (numpy.array | torch.tensor, shape=[N, M]):
            indicate which bbox3d that each point lies in.
        points_colors (numpy.array): color of each points.
        pcd (:obj:`open3d.geometry.PointCloud`): point cloud. Default: None.
        bbox_color (tuple[float]): the color of bbox. Default: (0, 1, 0).
        points_in_box_color (tuple[float]):
            the color of points which are in bbox3d. Default: (1, 0, 0).
        rot_axis (int): rotation axis of bbox. Default: 2.
        center_mode (bool): indicate the center of bbox is bottom center
            or gravity center. avaliable mode
            ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
        mode (str):  indicate type of the input points, avaliable mode
            ['xyz', 'xyzrgb']. Default: 'xyz'.
    """
    if isinstance(bbox3d, torch.Tensor):
        bbox3d = bbox3d.cpu().numpy()
    if isinstance(indices, torch.Tensor):
        indices = indices.cpu().numpy()
    bbox3d = bbox3d.copy()

    in_box_color = np.array(points_in_box_color)
    for i in range(len(bbox3d)):
        center = bbox3d[i, 0:3]
        dim = bbox3d[i, 3:6]
        yaw = np.zeros(3)
        # TODO: fix problem of current coordinate system
        # dim[0], dim[1] = dim[1], dim[0]  # for current coordinate
        # yaw[rot_axis] = -(bbox3d[i, 6] - 0.5 * np.pi)
        yaw[rot_axis] = -bbox3d[i, 6]
        rot_mat = geometry.get_rotation_matrix_from_xyz(yaw)
        if center_mode == 'lidar_bottom':
            center[rot_axis] += dim[
                rot_axis] / 2  # bottom center to gravity center
        elif center_mode == 'camera_bottom':
            center[rot_axis] -= dim[
                rot_axis] / 2  # bottom center to gravity center
        box3d = geometry.OrientedBoundingBox(center, rot_mat, dim)

        line_set = geometry.LineSet.create_from_oriented_bounding_box(box3d)
        line_set.paint_uniform_color(bbox_color)
        # draw bboxes on visualizer
        vis.add_geometry(line_set)

        # change the color of points which are in box
        if pcd is not None and mode == 'xyz':
            points_colors[indices[:, i].astype(np.bool)] = in_box_color

    # update points colors
    if pcd is not None:
        pcd.colors = o3d.utility.Vector3dVector(points_colors)
        vis.update_geometry(pcd)


def show_pts_index_boxes(points,
                         bbox3d=None,
                         show=True,
                         indices=None,
                         save_path=None,
                         points_size=2,
                         point_color=(0.5, 0.5, 0.5),
                         bbox_color=(0, 1, 0),
                         points_in_box_color=(1, 0, 0),
                         rot_axis=2,
                         center_mode='lidar_bottom',
                         mode='xyz'):
    """Draw bbox and points on visualizer with indices that indicate which
    bbox3d that each point lies in.

    Args:
        points (numpy.array | torch.tensor, shape=[N, 3+C]):
            points to visualize.
        bbox3d (numpy.array | torch.tensor, shape=[M, 7]):
            3d bbox (x, y, z, dx, dy, dz, yaw) to visualize. Default: None.
        show (bool): whether to show the visualization results. Default: True.
        indices (numpy.array | torch.tensor, shape=[N, M]):
            indicate which bbox3d that each point lies in. Default: None.
        save_path (str): path to save visualized results. Default: None.
        points_size (int): the size of points to show on visualizer.
            Default: 2.
        point_color (tuple[float]): the color of points.
            Default: (0.5, 0.5, 0.5).
        bbox_color (tuple[float]): the color of bbox. Default: (0, 1, 0).
        points_in_box_color (tuple[float]):
            the color of points which are in bbox3d. Default: (1, 0, 0).
        rot_axis (int): rotation axis of bbox. Default: 2.
        center_mode (bool): indicate the center of bbox is bottom center
            or gravity center. avaliable mode
            ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
        mode (str):  indicate type of the input points, avaliable mode
            ['xyz', 'xyzrgb']. Default: 'xyz'.
    """
    # TODO: support score and class info
    assert 0 <= rot_axis <= 2

    # init visualizer
    vis = o3d.visualization.Visualizer()
    vis.create_window()
    mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
        size=1, origin=[0, 0, 0])  # create coordinate frame
    vis.add_geometry(mesh_frame)

    # draw points
    pcd, points_colors = _draw_points(points, vis, points_size, point_color,
                                      mode)

    # draw boxes
    if bbox3d is not None:
        _draw_bboxes_ind(bbox3d, vis, indices, points_colors, pcd, bbox_color,
                         points_in_box_color, rot_axis, center_mode, mode)

    if show:
        vis.run()

    if save_path is not None:
        vis.capture_screen_image(save_path)

    vis.destroy_window()


def project_pts_on_img(points,
                       raw_img,
                       lidar2img_rt,
                       max_distance=70,
                       thickness=-1):
    """Project the 3D points cloud on 2D image.

    Args:
        points (numpy.array): 3D points cloud (x, y, z) to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        max_distance (float): the max distance of the points cloud.
            Default: 70.
        thickness (int, optional): The thickness of 2D points. Default: -1.
    """
    img = raw_img.copy()
    num_points = points.shape[0]
    pts_4d = np.concatenate([points[:, :3], np.ones((num_points, 1))], axis=-1)
    pts_2d = pts_4d @ lidar2img_rt.T

    # cam_points is Tensor of Nx4 whose last column is 1
    # transform camera coordinate to image coordinate
    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=99999)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]

    fov_inds = ((pts_2d[:, 0] < img.shape[1])
                & (pts_2d[:, 0] >= 0)
                & (pts_2d[:, 1] < img.shape[0])
                & (pts_2d[:, 1] >= 0))

    imgfov_pts_2d = pts_2d[fov_inds, :3]  # u, v, d

    cmap = plt.cm.get_cmap('hsv', 256)
    cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255
    for i in range(imgfov_pts_2d.shape[0]):
        depth = imgfov_pts_2d[i, 2]
        color = cmap[np.clip(int(max_distance * 10 / depth), 0, 255), :]
        cv2.circle(
            img,
            center=(int(np.round(imgfov_pts_2d[i, 0])),
                    int(np.round(imgfov_pts_2d[i, 1]))),
            radius=1,
            color=tuple(color),
            thickness=thickness,
        )
    cv2.imshow('project_pts_img', img)
    cv2.waitKey(100)


def project_bbox3d_on_img(bboxes3d,
                          raw_img,
                          lidar2img_rt,
                          color=(0, 255, 0),
                          thickness=1):
    """Project the 3D bbox on 2D image.

    Args:
        bboxes3d (numpy.array, shape=[M, 7]):
            3d bbox (x, y, z, dx, dy, dz, yaw) to visualize.
        raw_img (numpy.array): The numpy array of image.
        lidar2img_rt (numpy.array, shape=[4, 4]): The projection matrix
            according to the camera intrinsic parameters.
        color (tuple[int]): the color to draw bboxes. Default: (0, 255, 0).
        thickness (int, optional): The thickness of bboxes. Default: 1.
    """
    img = raw_img.copy()
    corners_3d = bboxes3d.corners
    num_bbox = corners_3d.shape[0]
    pts_4d = np.concatenate(
        [corners_3d.reshape(-1, 3),
         np.ones((num_bbox * 8, 1))], axis=-1)
    pts_2d = pts_4d @ lidar2img_rt.T

    pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
    pts_2d[:, 0] /= pts_2d[:, 2]
    pts_2d[:, 1] /= pts_2d[:, 2]
    imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)

    line_indices = ((0, 1), (0, 3), (0, 4), (1, 2), (1, 5), (3, 2), (3, 7),
                    (4, 5), (4, 7), (2, 6), (5, 6), (6, 7))
    for i in range(num_bbox):
        corners = imgfov_pts_2d[i].astype(np.int)
        for start, end in line_indices:
            cv2.line(img, (corners[start, 0], corners[start, 1]),
                     (corners[end, 0], corners[end, 1]), color, thickness,
                     cv2.LINE_AA)

    cv2.imshow('project_bbox3d_img', img)
    cv2.waitKey(0)


class Visualizer(object):
    r"""Online visualizer implemented with Open3d.

    Args:
        points (numpy.array, shape=[N, 3+C]): Points to visualize. The Points
            cloud is in mode of Coord3DMode.DEPTH (please refer to
            core.structures.coord_3d_mode).
        bbox3d (numpy.array, shape=[M, 7]): 3d bbox (x, y, z, dx, dy, dz, yaw)
            to visualize. The 3d bbox is in mode of Box3DMode.DEPTH with
            gravity_center (please refer to core.structures.box_3d_mode).
            Default: None.
        save_path (str): path to save visualized results. Default: None.
        points_size (int): the size of points to show on visualizer.
            Default: 2.
        point_color (tuple[float]): the color of points.
            Default: (0.5, 0.5, 0.5).
        bbox_color (tuple[float]): the color of bbox. Default: (0, 1, 0).
        points_in_box_color (tuple[float]):
            the color of points which are in bbox3d. Default: (1, 0, 0).
        rot_axis (int): rotation axis of bbox. Default: 2.
        center_mode (bool): indicate the center of bbox is bottom center
            or gravity center. avaliable mode
            ['lidar_bottom', 'camera_bottom']. Default: 'lidar_bottom'.
        mode (str):  indicate type of the input points, avaliable mode
            ['xyz', 'xyzrgb']. Default: 'xyz'.
    """

    def __init__(self,
                 points,
                 bbox3d=None,
                 save_path=None,
                 points_size=2,
                 point_color=(0.5, 0.5, 0.5),
                 bbox_color=(0, 1, 0),
                 points_in_box_color=(1, 0, 0),
                 rot_axis=2,
                 center_mode='lidar_bottom',
                 mode='xyz'):
        super(Visualizer, self).__init__()
        assert 0 <= rot_axis <= 2

        # init visualizer
        self.o3d_visualizer = o3d.visualization.Visualizer()
        self.o3d_visualizer.create_window()
        mesh_frame = geometry.TriangleMesh.create_coordinate_frame(
            size=1, origin=[0, 0, 0])  # create coordinate frame
        self.o3d_visualizer.add_geometry(mesh_frame)

        self.points_size = points_size
        self.point_color = point_color
        self.bbox_color = bbox_color
        self.points_in_box_color = points_in_box_color
        self.rot_axis = rot_axis
        self.center_mode = center_mode
        self.mode = mode

        # draw points
        if points is not None:
            self.pcd, self.points_colors = _draw_points(
                points, self.o3d_visualizer, points_size, point_color, mode)

        # draw boxes
        if bbox3d is not None:
            _draw_bboxes(bbox3d, self.o3d_visualizer, self.points_colors,
                         self.pcd, bbox_color, points_in_box_color, rot_axis,
                         center_mode, mode)

    def add_bboxes(self, bbox3d, bbox_color=None, points_in_box_color=None):
        """Add bounding box to visualizer.

        Args:
            bbox3d (numpy.array, shape=[M, 7]):
                3D bbox (x, y, z, dx, dy, dz, yaw) to be visualized.
                The 3d bbox is in mode of Box3DMode.DEPTH with
                gravity_center (please refer to core.structures.box_3d_mode).
            bbox_color (tuple[float]): the color of bbox. Defaule: None.
            points_in_box_color (tuple[float]): the color of points which
                are in bbox3d. Defaule: None.
        """
        if bbox_color is None:
            bbox_color = self.bbox_color
        if points_in_box_color is None:
            points_in_box_color = self.points_in_box_color
        _draw_bboxes(bbox3d, self.o3d_visualizer, self.points_colors, self.pcd,
                     bbox_color, points_in_box_color, self.rot_axis,
                     self.center_mode, self.mode)

    def show(self, save_path=None):
        """Visualize the points cloud.

        Args:
            save_path (str): path to save image. Default: None.
        """

        self.o3d_visualizer.run()

        if save_path is not None:
            self.o3d_visualizer.capture_screen_image(save_path)

        self.o3d_visualizer.destroy_window()
        return