nuscenes_converter.py 20.4 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
from collections import OrderedDict
zhangwenwei's avatar
zhangwenwei committed
4
5
from nuscenes.nuscenes import NuScenes
from nuscenes.utils.geometry_utils import view_points
zhangwenwei's avatar
zhangwenwei committed
6
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
7
8
from pyquaternion import Quaternion
from shapely.geometry import MultiPoint, box
zhangwenwei's avatar
zhangwenwei committed
9
from typing import List, Tuple, Union
zhangwenwei's avatar
zhangwenwei committed
10
11
12
13
14
15
16
17
18
19
20
21

from mmdet3d.datasets import NuScenesDataset

nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
                  'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
                  'barrier')


def create_nuscenes_infos(root_path,
                          info_prefix,
                          version='v1.0-trainval',
                          max_sweeps=10):
liyinhao's avatar
liyinhao committed
22
23
24
25
26
27
28
29
30
31
32
33
    """Create info file of nuscene dataset.

    Given the raw data, generate its related info file in pkl format.

    Args:
        root_path (str): Path of the data root.
        info_prefix (str): Prefix of the info file to be generated.
        version (str): Version of the data.
            Default: 'v1.0-trainval'
        max_sweeps (int): Max number of sweeps.
            Default: 10
    """
zhangwenwei's avatar
zhangwenwei committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    from nuscenes.nuscenes import NuScenes
    nusc = NuScenes(version=version, dataroot=root_path, verbose=True)
    from nuscenes.utils import splits
    available_vers = ['v1.0-trainval', 'v1.0-test', 'v1.0-mini']
    assert version in available_vers
    if version == 'v1.0-trainval':
        train_scenes = splits.train
        val_scenes = splits.val
    elif version == 'v1.0-test':
        train_scenes = splits.test
        val_scenes = []
    elif version == 'v1.0-mini':
        train_scenes = splits.mini_train
        val_scenes = splits.mini_val
    else:
        raise ValueError('unknown')

    # filter existing scenes.
wangtai's avatar
wangtai committed
52
    available_scenes = get_available_scenes(nusc)
zhangwenwei's avatar
zhangwenwei committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    available_scene_names = [s['name'] for s in available_scenes]
    train_scenes = list(
        filter(lambda x: x in available_scene_names, train_scenes))
    val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes))
    train_scenes = set([
        available_scenes[available_scene_names.index(s)]['token']
        for s in train_scenes
    ])
    val_scenes = set([
        available_scenes[available_scene_names.index(s)]['token']
        for s in val_scenes
    ])

    test = 'test' in version
    if test:
        print('test scene: {}'.format(len(train_scenes)))
    else:
        print('train scene: {}, val scene: {}'.format(
            len(train_scenes), len(val_scenes)))
    train_nusc_infos, val_nusc_infos = _fill_trainval_infos(
        nusc, train_scenes, val_scenes, test, max_sweeps=max_sweeps)

    metadata = dict(version=version)
    if test:
        print('test sample: {}'.format(len(train_nusc_infos)))
        data = dict(infos=train_nusc_infos, metadata=metadata)
        info_path = osp.join(root_path,
                             '{}_infos_test.pkl'.format(info_prefix))
        mmcv.dump(data, info_path)
    else:
        print('train sample: {}, val sample: {}'.format(
            len(train_nusc_infos), len(val_nusc_infos)))
        data = dict(infos=train_nusc_infos, metadata=metadata)
        info_path = osp.join(root_path,
                             '{}_infos_train.pkl'.format(info_prefix))
        mmcv.dump(data, info_path)
        data['infos'] = val_nusc_infos
        info_val_path = osp.join(root_path,
                                 '{}_infos_val.pkl'.format(info_prefix))
        mmcv.dump(data, info_val_path)


wangtai's avatar
wangtai committed
95
96
97
98
99
100
101
102
103
104
105
106
107
def get_available_scenes(nusc):
    """Get available scenes from the input nuscenes class.

    Given the raw data, get the information of available scenes for
    further info generation.

    Args:
        nusc (class): Dataset class in the nuScenes dataset.

    Returns:
        available_scenes (list[dict]): List of basic information for the
            available scenes.
    """
zhangwenwei's avatar
zhangwenwei committed
108
109
110
111
112
113
114
115
116
117
118
    available_scenes = []
    print('total scene num: {}'.format(len(nusc.scene)))
    for scene in nusc.scene:
        scene_token = scene['token']
        scene_rec = nusc.get('scene', scene_token)
        sample_rec = nusc.get('sample', scene_rec['first_sample_token'])
        sd_rec = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP'])
        has_more_frames = True
        scene_not_exist = False
        while has_more_frames:
            lidar_path, boxes, _ = nusc.get_sample_data(sd_rec['token'])
wangtai's avatar
wangtai committed
119
            lidar_path = str(lidar_path)
zhangwenwei's avatar
zhangwenwei committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            if not mmcv.is_filepath(lidar_path):
                scene_not_exist = True
                break
            else:
                break
            if not sd_rec['next'] == '':
                sd_rec = nusc.get('sample_data', sd_rec['next'])
            else:
                has_more_frames = False
        if scene_not_exist:
            continue
        available_scenes.append(scene)
    print('exist scene num: {}'.format(len(available_scenes)))
    return available_scenes


def _fill_trainval_infos(nusc,
                         train_scenes,
                         val_scenes,
                         test=False,
                         max_sweeps=10):
wangtai's avatar
wangtai committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    """Generate the train/val infos from the raw data.

    Args:
        nusc (:obj:``NuScenes``): Dataset class in the nuScenes dataset.
        train_scenes (list[str]): Basic information of training scenes.
        val_scenes (list[str]): Basic information of validation scenes.
        test (bool): Whether use the test mode. In the test mode, no
            annotations can be accessed. Default: False.
        max_sweeps (int): Max number of sweeps. Default: 10.

    Returns:
        tuple[list[dict]]: Information of training set and validation set
            that will be saved to the info file.
    """
zhangwenwei's avatar
zhangwenwei committed
155
156
157
158
159
160
161
162
163
164
165
    train_nusc_infos = []
    val_nusc_infos = []

    for sample in mmcv.track_iter_progress(nusc.sample):
        lidar_token = sample['data']['LIDAR_TOP']
        sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
        cs_record = nusc.get('calibrated_sensor',
                             sd_rec['calibrated_sensor_token'])
        pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
        lidar_path, boxes, _ = nusc.get_sample_data(lidar_token)

wangtai's avatar
wangtai committed
166
        mmcv.check_file_exist(lidar_path)
zhangwenwei's avatar
zhangwenwei committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

        info = {
            'lidar_path': lidar_path,
            'token': sample['token'],
            'sweeps': [],
            'cams': dict(),
            'lidar2ego_translation': cs_record['translation'],
            'lidar2ego_rotation': cs_record['rotation'],
            'ego2global_translation': pose_record['translation'],
            'ego2global_rotation': pose_record['rotation'],
            'timestamp': sample['timestamp'],
        }

        l2e_r = info['lidar2ego_rotation']
        l2e_t = info['lidar2ego_translation']
        e2g_r = info['ego2global_rotation']
        e2g_t = info['ego2global_translation']
        l2e_r_mat = Quaternion(l2e_r).rotation_matrix
        e2g_r_mat = Quaternion(e2g_r).rotation_matrix

        # obtain 6 image's information per frame
        camera_types = [
            'CAM_FRONT',
            'CAM_FRONT_RIGHT',
            'CAM_FRONT_LEFT',
            'CAM_BACK',
            'CAM_BACK_LEFT',
            'CAM_BACK_RIGHT',
        ]
        for cam in camera_types:
            cam_token = sample['data'][cam]
            cam_path, _, cam_intrinsic = nusc.get_sample_data(cam_token)
            cam_info = obtain_sensor2top(nusc, cam_token, l2e_t, l2e_r_mat,
                                         e2g_t, e2g_r_mat, cam)
            cam_info.update(cam_intrinsic=cam_intrinsic)
            info['cams'].update({cam: cam_info})

        # obtain sweeps for a single key-frame
        sd_rec = nusc.get('sample_data', sample['data']['LIDAR_TOP'])
        sweeps = []
        while len(sweeps) < max_sweeps:
            if not sd_rec['prev'] == '':
                sweep = obtain_sensor2top(nusc, sd_rec['prev'], l2e_t,
                                          l2e_r_mat, e2g_t, e2g_r_mat, 'lidar')
                sweeps.append(sweep)
                sd_rec = nusc.get('sample_data', sd_rec['prev'])
            else:
                break
        info['sweeps'] = sweeps
        # obtain annotation
        if not test:
            annotations = [
                nusc.get('sample_annotation', token)
                for token in sample['anns']
            ]
            locs = np.array([b.center for b in boxes]).reshape(-1, 3)
            dims = np.array([b.wlh for b in boxes]).reshape(-1, 3)
            rots = np.array([b.orientation.yaw_pitch_roll[0]
                             for b in boxes]).reshape(-1, 1)
            velocity = np.array(
                [nusc.box_velocity(token)[:2] for token in sample['anns']])
            # convert velo from global to lidar
            for i in range(len(boxes)):
                velo = np.array([*velocity[i], 0.0])
                velo = velo @ np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(
                    l2e_r_mat).T
                velocity[i] = velo[:2]

            names = [b.name for b in boxes]
            for i in range(len(names)):
                if names[i] in NuScenesDataset.NameMapping:
                    names[i] = NuScenesDataset.NameMapping[names[i]]
            names = np.array(names)
            # we need to convert rot to SECOND format.
            gt_boxes = np.concatenate([locs, dims, -rots - np.pi / 2], axis=1)
            assert len(gt_boxes) == len(
                annotations), f'{len(gt_boxes)}, {len(annotations)}'
            info['gt_boxes'] = gt_boxes
            info['gt_names'] = names
            info['gt_velocity'] = velocity.reshape(-1, 2)
            info['num_lidar_pts'] = np.array(
                [a['num_lidar_pts'] for a in annotations])
            info['num_radar_pts'] = np.array(
                [a['num_radar_pts'] for a in annotations])

        if sample['scene_token'] in train_scenes:
            train_nusc_infos.append(info)
        else:
            val_nusc_infos.append(info)

    return train_nusc_infos, val_nusc_infos


def obtain_sensor2top(nusc,
                      sensor_token,
                      l2e_t,
                      l2e_r_mat,
                      e2g_t,
                      e2g_r_mat,
                      sensor_type='lidar'):
wangtai's avatar
wangtai committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    """Obtain the info with RT matric from general sensor to Top LiDAR.

    Args:
        nusc (class): Dataset class in the nuScenes dataset.
        sensor_token (str): Sample data token corresponding to the
            specific sensor type.
        l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3).
        l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego
            in shape (3, 3).
        e2g_t (np.ndarray): Translation from ego to global in shape (1, 3).
        e2g_r_mat (np.ndarray): Rotation matrix from ego to global
            in shape (3, 3).
        sensor_type (str): Sensor to calibrate. Default: 'lidar'.

    Returns:
        sweep (dict): Sweep information after transformation.
zhangwenwei's avatar
zhangwenwei committed
283
284
285
286
287
    """
    sd_rec = nusc.get('sample_data', sensor_token)
    cs_record = nusc.get('calibrated_sensor',
                         sd_rec['calibrated_sensor_token'])
    pose_record = nusc.get('ego_pose', sd_rec['ego_pose_token'])
wangtai's avatar
wangtai committed
288
    data_path = str(nusc.get_sample_data_path(sd_rec['token']))
zhangwenwei's avatar
zhangwenwei committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    sweep = {
        'data_path': data_path,
        'type': sensor_type,
        'sample_data_token': sd_rec['token'],
        'sensor2ego_translation': cs_record['translation'],
        'sensor2ego_rotation': cs_record['rotation'],
        'ego2global_translation': pose_record['translation'],
        'ego2global_rotation': pose_record['rotation'],
        'timestamp': sd_rec['timestamp']
    }
    l2e_r_s = sweep['sensor2ego_rotation']
    l2e_t_s = sweep['sensor2ego_translation']
    e2g_r_s = sweep['ego2global_rotation']
    e2g_t_s = sweep['ego2global_translation']

    # obtain the RT from sensor to Top LiDAR
    # sweep->ego->global->ego'->lidar
    l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix
    e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix
    R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ (
        np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
    T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ (
        np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
    T -= e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
                  ) + l2e_t @ np.linalg.inv(l2e_r_mat).T
    sweep['sensor2lidar_rotation'] = R.T  # points @ R.T + T
    sweep['sensor2lidar_translation'] = T
    return sweep


def export_2d_annotation(root_path, info_path, version):
wangtai's avatar
wangtai committed
320
321
322
323
324
325
326
    """Export 2d annotation from the info file and raw data.

    Args:
        root_path (str): Root path of the raw data.
        info_path (str): Path of the info file.
        version (str): Dataset version.
    """
zhangwenwei's avatar
zhangwenwei committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]
    nusc_infos = mmcv.load(info_path)['infos']
    nusc = NuScenes(version=version, dataroot=root_path, verbose=True)
    # info_2d_list = []
    cat2Ids = [
        dict(id=nus_categories.index(cat_name), name=cat_name)
        for cat_name in nus_categories
    ]
    coco_ann_id = 0
    coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids)
    for info in mmcv.track_iter_progress(nusc_infos):
        for cam in camera_types:
            cam_info = info['cams'][cam]
            coco_infos = get_2d_boxes(
                nusc,
                cam_info['sample_data_token'],
                visibilities=['', '1', '2', '3', '4'])
            (height, width, _) = mmcv.imread(cam_info['data_path']).shape
            coco_2d_dict['images'].append(
                dict(
                    file_name=cam_info['data_path'],
                    id=cam_info['sample_data_token'],
                    width=width,
                    height=height))
            for coco_info in coco_infos:
                if coco_info is None:
                    continue
                # add an empty key for coco format
                coco_info['segmentation'] = []
                coco_info['id'] = coco_ann_id
                coco_2d_dict['annotations'].append(coco_info)
                coco_ann_id += 1
wangtai's avatar
wangtai committed
367
    mmcv.dump(coco_2d_dict, f'{info_path[:-4]}.coco.json')
zhangwenwei's avatar
zhangwenwei committed
368
369
370
371
372
373
374
375
376
377
378


def get_2d_boxes(nusc, sample_data_token: str,
                 visibilities: List[str]) -> List[OrderedDict]:
    """Get the 2D annotation records for a given `sample_data_token`.

    Args:
        sample_data_token: Sample data token belonging to a camera keyframe.
        visibilities: Visibility filter.

    Return:
wangtai's avatar
wangtai committed
379
        list[dict]: List of 2D annotation record that belongs to the input
zhangwenwei's avatar
zhangwenwei committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
            `sample_data_token`.
    """

    # Get the sample data and the sample corresponding to that sample data.
    sd_rec = nusc.get('sample_data', sample_data_token)

    assert sd_rec[
        'sensor_modality'] == 'camera', 'Error: get_2d_boxes only works' \
        ' for camera sample_data!'
    if not sd_rec['is_key_frame']:
        raise ValueError(
            'The 2D re-projections are available only for keyframes.')

    s_rec = nusc.get('sample', sd_rec['sample_token'])

    # Get the calibrated sensor and ego pose
    # record to get the transformation matrices.
    cs_rec = nusc.get('calibrated_sensor', sd_rec['calibrated_sensor_token'])
    pose_rec = nusc.get('ego_pose', sd_rec['ego_pose_token'])
    camera_intrinsic = np.array(cs_rec['camera_intrinsic'])

    # Get all the annotation with the specified visibilties.
    ann_recs = [
        nusc.get('sample_annotation', token) for token in s_rec['anns']
    ]
    ann_recs = [
        ann_rec for ann_rec in ann_recs
        if (ann_rec['visibility_token'] in visibilities)
    ]

    repro_recs = []

    for ann_rec in ann_recs:
        # Augment sample_annotation with token information.
        ann_rec['sample_annotation_token'] = ann_rec['token']
        ann_rec['sample_data_token'] = sample_data_token

        # Get the box in global coordinates.
        box = nusc.get_box(ann_rec['token'])

        # Move them to the ego-pose frame.
        box.translate(-np.array(pose_rec['translation']))
        box.rotate(Quaternion(pose_rec['rotation']).inverse)

        # Move them to the calibrated sensor frame.
        box.translate(-np.array(cs_rec['translation']))
        box.rotate(Quaternion(cs_rec['rotation']).inverse)

        # Filter out the corners that are not in front of the calibrated
        # sensor.
        corners_3d = box.corners()
        in_front = np.argwhere(corners_3d[2, :] > 0).flatten()
        corners_3d = corners_3d[:, in_front]

        # Project 3d box to 2d.
        corner_coords = view_points(corners_3d, camera_intrinsic,
                                    True).T[:, :2].tolist()

        # Keep only corners that fall within the image.
        final_coords = post_process_coords(corner_coords)

        # Skip if the convex hull of the re-projected corners
        # does not intersect the image canvas.
        if final_coords is None:
            continue
        else:
            min_x, min_y, max_x, max_y = final_coords

        # Generate dictionary record to be included in the .json file.
        repro_rec = generate_record(ann_rec, min_x, min_y, max_x, max_y,
                                    sample_data_token, sd_rec['filename'])
        repro_recs.append(repro_rec)

    return repro_recs


def post_process_coords(
    corner_coords: List, imsize: Tuple[int, int] = (1600, 900)
) -> Union[Tuple[float, float, float, float], None]:
zhangwenwei's avatar
zhangwenwei committed
459
460
    """Get the intersection of the convex hull of the reprojected bbox corners
    and the image canvas, return None if no intersection.
zhangwenwei's avatar
zhangwenwei committed
461

wangtai's avatar
wangtai committed
462
463
464
465
    Args:
        corner_coords (list[int]): Corner coordinates of reprojected
            bounding box.
        imsize (tuple[int]): Size of the image canvas.
zhangwenwei's avatar
zhangwenwei committed
466
467

    Return:
wangtai's avatar
wangtai committed
468
469
        tuple [float]: Intersection of the convex hull of the 2D box
            corners and the image canvas.
zhangwenwei's avatar
zhangwenwei committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    """
    polygon_from_2d_box = MultiPoint(corner_coords).convex_hull
    img_canvas = box(0, 0, imsize[0], imsize[1])

    if polygon_from_2d_box.intersects(img_canvas):
        img_intersection = polygon_from_2d_box.intersection(img_canvas)
        intersection_coords = np.array(
            [coord for coord in img_intersection.exterior.coords])

        min_x = min(intersection_coords[:, 0])
        min_y = min(intersection_coords[:, 1])
        max_x = max(intersection_coords[:, 0])
        max_y = max(intersection_coords[:, 1])

        return min_x, min_y, max_x, max_y
    else:
        return None


def generate_record(ann_rec: dict, x1: float, y1: float, x2: float, y2: float,
                    sample_data_token: str, filename: str) -> OrderedDict:
zhangwenwei's avatar
zhangwenwei committed
491
492
    """Generate one 2D annotation record given various informations on top of
    the 2D bounding box coordinates.
wangtai's avatar
wangtai committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512

    Args:
        ann_rec (dict): Original 3d annotation record.
        x1 (float): Minimum value of the x coordinate.
        y1 (float): Minimum value of the y coordinate.
        x2 (float): Maximum value of the x coordinate.
        y2 (float): Maximum value of the y coordinate.
        sample_data_token (str): Sample data token.
        filename (str):The corresponding image file where the annotation
            is present.

    Returns:
        dict: A sample 2D annotation record.
            - file_name (str): flie name
            - image_id (str): sample data token
            - area (float): 2d box area
            - category_name (str): category name
            - category_id (int): category id
            - bbox (list[float]): left x, top y, dx, dy of 2d box
            - iscrowd (int): whether the area is crowd
zhangwenwei's avatar
zhangwenwei committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    """
    repro_rec = OrderedDict()
    repro_rec['sample_data_token'] = sample_data_token
    coco_rec = dict()

    relevant_keys = [
        'attribute_tokens',
        'category_name',
        'instance_token',
        'next',
        'num_lidar_pts',
        'num_radar_pts',
        'prev',
        'sample_annotation_token',
        'sample_data_token',
        'visibility_token',
    ]

    for key, value in ann_rec.items():
        if key in relevant_keys:
            repro_rec[key] = value

    repro_rec['bbox_corners'] = [x1, y1, x2, y2]
    repro_rec['filename'] = filename

    coco_rec['file_name'] = filename
    coco_rec['image_id'] = sample_data_token
    coco_rec['area'] = (y2 - y1) * (x2 - x1)

    if repro_rec['category_name'] not in NuScenesDataset.NameMapping:
        return None
    cat_name = NuScenesDataset.NameMapping[repro_rec['category_name']]
    coco_rec['category_name'] = cat_name
    coco_rec['category_id'] = nus_categories.index(cat_name)
    coco_rec['bbox'] = [x1, y1, x2 - x1, y2 - y1]
    coco_rec['iscrowd'] = 0

    return coco_rec