sparse_encoder.py 5.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
from torch import nn as nn
zhangwenwei's avatar
zhangwenwei committed
2

wuyuefeng's avatar
wuyuefeng committed
3
from mmdet3d.ops import make_sparse_convmodule
zhangwenwei's avatar
zhangwenwei committed
4
from mmdet3d.ops import spconv as spconv
zhangwenwei's avatar
zhangwenwei committed
5
6
7
from ..registry import MIDDLE_ENCODERS


8
@MIDDLE_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
9
class SparseEncoder(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
10
    """Sparse encoder for Second.
wuyuefeng's avatar
wuyuefeng committed
11
12
13
14
15
16
17
18
19
20
21
22
23

    See https://arxiv.org/abs/1907.03670 for more detials.

    Args:
        in_channels (int): the number of input channels
        sparse_shape (list[int]): the sparse shape of input tensor
        norm_cfg (dict): config of normalization layer
        base_channels (int): out channels for conv_input layer
        output_channels (int): out channels for conv_out layer
        encoder_channels (tuple[tuple[int]]):
            conv channels of each encode block
        encoder_paddings (tuple[tuple[int]]): paddings of each encode block
    """
zhangwenwei's avatar
zhangwenwei committed
24
25
26

    def __init__(self,
                 in_channels,
wuyuefeng's avatar
wuyuefeng committed
27
28
29
30
31
32
33
34
35
                 sparse_shape,
                 order=('conv', 'norm', 'act'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 base_channels=16,
                 output_channels=128,
                 encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
                                                                        64)),
                 encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
                                                                 1))):
zhangwenwei's avatar
zhangwenwei committed
36
        super().__init__()
wuyuefeng's avatar
wuyuefeng committed
37
        self.sparse_shape = sparse_shape
zhangwenwei's avatar
zhangwenwei committed
38
        self.in_channels = in_channels
wuyuefeng's avatar
wuyuefeng committed
39
40
41
42
43
44
        self.order = order
        self.base_channels = base_channels
        self.output_channels = output_channels
        self.encoder_channels = encoder_channels
        self.encoder_paddings = encoder_paddings
        self.stage_num = len(self.encoder_channels)
zhangwenwei's avatar
zhangwenwei committed
45
        # Spconv init all weight on its own
wuyuefeng's avatar
wuyuefeng committed
46
47
48
49
50
51
52
53

        assert isinstance(order, tuple) and len(order) == 3
        assert set(order) == {'conv', 'norm', 'act'}

        if self.order[0] != 'conv':  # pre activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
zhangwenwei's avatar
zhangwenwei committed
54
55
56
                3,
                norm_cfg=norm_cfg,
                padding=1,
wuyuefeng's avatar
wuyuefeng committed
57
58
59
60
61
62
63
                indice_key='subm1',
                conv_type='SubMConv3d',
                order=('conv', ))
        else:  # post activate
            self.conv_input = make_sparse_convmodule(
                in_channels,
                self.base_channels,
zhangwenwei's avatar
zhangwenwei committed
64
65
66
                3,
                norm_cfg=norm_cfg,
                padding=1,
wuyuefeng's avatar
wuyuefeng committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
                indice_key='subm1',
                conv_type='SubMConv3d')

        encoder_out_channels = self.make_encoder_layers(
            make_sparse_convmodule, norm_cfg, self.base_channels)

        self.conv_out = make_sparse_convmodule(
            encoder_out_channels,
            self.output_channels,
            kernel_size=(3, 1, 1),
            stride=(2, 1, 1),
            norm_cfg=norm_cfg,
            padding=0,
            indice_key='spconv_down2',
            conv_type='SparseConv3d')
zhangwenwei's avatar
zhangwenwei committed
82
83

    def forward(self, voxel_features, coors, batch_size):
zhangwenwei's avatar
zhangwenwei committed
84
        """Forward of SparseEncoder.
wuyuefeng's avatar
wuyuefeng committed
85
86
87
88
89
90
91
92

        Args:
            voxel_features (torch.float32): shape [N, C]
            coors (torch.int32): shape [N, 4](batch_idx, z_idx, y_idx, x_idx)
            batch_size (int): batch size

        Returns:
            dict: backbone features
zhangwenwei's avatar
zhangwenwei committed
93
94
95
96
97
98
99
        """
        coors = coors.int()
        input_sp_tensor = spconv.SparseConvTensor(voxel_features, coors,
                                                  self.sparse_shape,
                                                  batch_size)
        x = self.conv_input(input_sp_tensor)

wuyuefeng's avatar
wuyuefeng committed
100
101
102
103
        encode_features = []
        for encoder_layer in self.encoder_layers:
            x = encoder_layer(x)
            encode_features.append(x)
zhangwenwei's avatar
zhangwenwei committed
104
105
106

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
wuyuefeng's avatar
wuyuefeng committed
107
        out = self.conv_out(encode_features[-1])
zhangwenwei's avatar
zhangwenwei committed
108
109
110
111
112
113
114
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

        return spatial_features

wuyuefeng's avatar
wuyuefeng committed
115
    def make_encoder_layers(self, make_block, norm_cfg, in_channels):
zhangwenwei's avatar
zhangwenwei committed
116
        """make encoder layers using sparse convs.
wuyuefeng's avatar
wuyuefeng committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

        Args:
            make_block (method): a bounded function to build blocks
            norm_cfg (dict[str]): config of normalization layer
            in_channels (int): the number of encoder input channels

        Returns:
            int: the number of encoder output channels
        """
        self.encoder_layers = spconv.SparseSequential()

        for i, blocks in enumerate(self.encoder_channels):
            blocks_list = []
            for j, out_channels in enumerate(tuple(blocks)):
                padding = tuple(self.encoder_paddings[i])[j]
                # each stage started with a spconv layer
                # except the first stage
                if i != 0 and j == 0:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            stride=2,
                            padding=padding,
                            indice_key=f'spconv{i + 1}',
                            conv_type='SparseConv3d'))
                else:
                    blocks_list.append(
                        make_block(
                            in_channels,
                            out_channels,
                            3,
                            norm_cfg=norm_cfg,
                            padding=padding,
                            indice_key=f'subm{i + 1}',
                            conv_type='SubMConv3d'))
                in_channels = out_channels
            stage_name = f'encoder_layer{i + 1}'
            stage_layers = spconv.SparseSequential(*blocks_list)
            self.encoder_layers.add_module(stage_name, stage_layers)
        return out_channels