free_anchor3d_head.py 10.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import torch
zhangwenwei's avatar
zhangwenwei committed
2
from torch.nn import functional as F
zhangwenwei's avatar
zhangwenwei committed
3
4
5
6
7
8
9
10
11

from mmdet3d.core.bbox import bbox_overlaps_nearest_3d
from mmdet.models import HEADS
from .anchor3d_head import Anchor3DHead
from .train_mixins import get_direction_target


@HEADS.register_module()
class FreeAnchor3DHead(Anchor3DHead):
zhangwenwei's avatar
zhangwenwei committed
12
    """`FreeAnchor <https://arxiv.org/abs/1909.02466>`_ head for 3D detection.
zhangwenwei's avatar
zhangwenwei committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

    Note:
        This implementation is directly modified from the `mmdet implementation
        <https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/free_anchor_retina_head.py>`_  # noqa
        We find it also works on 3D detection with minor modification, i.e.,
        different hyper-parameters and a additional direction classifier.

    Args:
        pre_anchor_topk (int): Number of boxes that be token in each bag.
        bbox_thr (float): The threshold of the saturated linear function. It is
            usually the same with the IoU threshold used in NMS.
        gamma (float): Gamma parameter in focal loss.
        alpha (float): Alpha parameter in focal loss.
        kwargs (dict): Other arguments are the same as those in :class:`Anchor3DHead`.
    """

    def __init__(self,
                 pre_anchor_topk=50,
                 bbox_thr=0.6,
                 gamma=2.0,
                 alpha=0.5,
                 **kwargs):
        super().__init__(**kwargs)
        self.pre_anchor_topk = pre_anchor_topk
        self.bbox_thr = bbox_thr
        self.gamma = gamma
        self.alpha = alpha

    def loss(self,
             cls_scores,
             bbox_preds,
             dir_cls_preds,
             gt_bboxes,
             gt_labels,
             input_metas,
             gt_bboxes_ignore=None):
        """Calculate loss of FreeAnchor head.

        Args:
            cls_scores (list[torch.Tensor]): Classification scores of
                different samples.
            bbox_preds (list[torch.Tensor]): Box predictions of
                different samples
            dir_cls_preds (list[torch.Tensor]): Direction predictions of
                different samples
            gt_bboxes (list[:obj:`BaseInstance3DBoxes`]): Ground truth boxes.
            gt_labels (list[torch.Tensor]): Ground truth labels.
            input_metas (list[dict]): List of input meta information.
            gt_bboxes_ignore (list[:obj:`BaseInstance3DBoxes`], optional):
                Ground truth boxes that should be ignored. Defaults to None.

        Returns:
            dict: Loss items.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.anchor_generator.num_levels

        anchor_list = self.get_anchors(featmap_sizes, input_metas)
        anchors = [torch.cat(anchor) for anchor in anchor_list]

        # concatenate each level
        cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(
                cls_score.size(0), -1, self.num_classes)
            for cls_score in cls_scores
        ]
        bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(
                bbox_pred.size(0), -1, self.box_code_size)
            for bbox_pred in bbox_preds
        ]
        dir_cls_preds = [
            dir_cls_pred.permute(0, 2, 3,
                                 1).reshape(dir_cls_pred.size(0), -1, 2)
            for dir_cls_pred in dir_cls_preds
        ]

        cls_scores = torch.cat(cls_scores, dim=1)
        bbox_preds = torch.cat(bbox_preds, dim=1)
        dir_cls_preds = torch.cat(dir_cls_preds, dim=1)

        cls_prob = torch.sigmoid(cls_scores)
        box_prob = []
        num_pos = 0
        positive_losses = []
        for _, (anchors_, gt_labels_, gt_bboxes_, cls_prob_, bbox_preds_,
                dir_cls_preds_) in enumerate(
                    zip(anchors, gt_labels, gt_bboxes, cls_prob, bbox_preds,
                        dir_cls_preds)):

            gt_bboxes_ = gt_bboxes_.tensor.to(anchors_.device)

            with torch.no_grad():
                # box_localization: a_{j}^{loc}, shape: [j, 4]
                pred_boxes = self.bbox_coder.decode(anchors_, bbox_preds_)

                # object_box_iou: IoU_{ij}^{loc}, shape: [i, j]
                object_box_iou = bbox_overlaps_nearest_3d(
                    gt_bboxes_, pred_boxes)

                # object_box_prob: P{a_{j} -> b_{i}}, shape: [i, j]
                t1 = self.bbox_thr
                t2 = object_box_iou.max(
                    dim=1, keepdim=True).values.clamp(min=t1 + 1e-12)
                object_box_prob = ((object_box_iou - t1) / (t2 - t1)).clamp(
                    min=0, max=1)

                # object_cls_box_prob: P{a_{j} -> b_{i}}, shape: [i, c, j]
                num_obj = gt_labels_.size(0)
                indices = torch.stack(
                    [torch.arange(num_obj).type_as(gt_labels_), gt_labels_],
                    dim=0)

                object_cls_box_prob = torch.sparse_coo_tensor(
                    indices, object_box_prob)

                # image_box_iou: P{a_{j} \in A_{+}}, shape: [c, j]
                """
                from "start" to "end" implement:
                image_box_iou = torch.sparse.max(object_cls_box_prob,
                                                 dim=0).t()

                """
                # start
                box_cls_prob = torch.sparse.sum(
                    object_cls_box_prob, dim=0).to_dense()

                indices = torch.nonzero(box_cls_prob).t_()
                if indices.numel() == 0:
                    image_box_prob = torch.zeros(
                        anchors_.size(0),
                        self.num_classes).type_as(object_box_prob)
                else:
                    nonzero_box_prob = torch.where(
                        (gt_labels_.unsqueeze(dim=-1) == indices[0]),
                        object_box_prob[:, indices[1]],
                        torch.tensor(
                            [0]).type_as(object_box_prob)).max(dim=0).values

                    # upmap to shape [j, c]
                    image_box_prob = torch.sparse_coo_tensor(
                        indices.flip([0]),
                        nonzero_box_prob,
                        size=(anchors_.size(0), self.num_classes)).to_dense()
                # end

                box_prob.append(image_box_prob)

            # construct bags for objects
            match_quality_matrix = bbox_overlaps_nearest_3d(
                gt_bboxes_, anchors_)
            _, matched = torch.topk(
                match_quality_matrix,
                self.pre_anchor_topk,
                dim=1,
                sorted=False)
            del match_quality_matrix

            # matched_cls_prob: P_{ij}^{cls}
            matched_cls_prob = torch.gather(
                cls_prob_[matched], 2,
                gt_labels_.view(-1, 1, 1).repeat(1, self.pre_anchor_topk,
                                                 1)).squeeze(2)

            # matched_box_prob: P_{ij}^{loc}
            matched_anchors = anchors_[matched]
            matched_object_targets = self.bbox_coder.encode(
                matched_anchors,
                gt_bboxes_.unsqueeze(dim=1).expand_as(matched_anchors))

            # direction classification loss
            loss_dir = None
            if self.use_direction_classifier:
                # also calculate direction prob: P_{ij}^{dir}
                matched_dir_targets = get_direction_target(
                    matched_anchors,
                    matched_object_targets,
                    self.dir_offset,
                    one_hot=False)
                loss_dir = self.loss_dir(
                    dir_cls_preds_[matched].transpose(-2, -1),
                    matched_dir_targets,
                    reduction_override='none')

            # generate bbox weights
            if self.diff_rad_by_sin:
                bbox_preds_[matched], matched_object_targets = \
                    self.add_sin_difference(
                        bbox_preds_[matched], matched_object_targets)
            bbox_weights = matched_anchors.new_ones(matched_anchors.size())
            # Use pop is not right, check performance
            code_weight = self.train_cfg.get('code_weight', None)
            if code_weight:
                bbox_weights = bbox_weights * bbox_weights.new_tensor(
                    code_weight)
            loss_bbox = self.loss_bbox(
                bbox_preds_[matched],
                matched_object_targets,
                bbox_weights,
                reduction_override='none').sum(-1)

            if loss_dir is not None:
                loss_bbox += loss_dir
            matched_box_prob = torch.exp(-loss_bbox)

            # positive_losses: {-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )}
            num_pos += len(gt_bboxes_)
            positive_losses.append(
                self.positive_bag_loss(matched_cls_prob, matched_box_prob))

        positive_loss = torch.cat(positive_losses).sum() / max(1, num_pos)

        # box_prob: P{a_{j} \in A_{+}}
        box_prob = torch.stack(box_prob, dim=0)

        # negative_loss:
        # \sum_{j}{ FL((1 - P{a_{j} \in A_{+}}) * (1 - P_{j}^{bg})) } / n||B||
        negative_loss = self.negative_bag_loss(cls_prob, box_prob).sum() / max(
            1, num_pos * self.pre_anchor_topk)

        losses = {
            'positive_bag_loss': positive_loss,
            'negative_bag_loss': negative_loss
        }
        return losses

    def positive_bag_loss(self, matched_cls_prob, matched_box_prob):
zhangwenwei's avatar
zhangwenwei committed
240
        """Generate positive bag loss.
zhangwenwei's avatar
zhangwenwei committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

        Args:
            matched_cls_prob (torch.Tensor): Classification probability
                of matched positive samples.
            matched_box_prob (torch.Tensor): Bounding box probability
                of matched positive samples.

        Returns:
            torch.Tensor: Loss of positive samples.
        """
        # bag_prob = Mean-max(matched_prob)
        matched_prob = matched_cls_prob * matched_box_prob
        weight = 1 / torch.clamp(1 - matched_prob, 1e-12, None)
        weight /= weight.sum(dim=1).unsqueeze(dim=-1)
        bag_prob = (weight * matched_prob).sum(dim=1)
        # positive_bag_loss = -self.alpha * log(bag_prob)
        bag_prob = bag_prob.clamp(0, 1)  # to avoid bug of BCE, check
        return self.alpha * F.binary_cross_entropy(
            bag_prob, torch.ones_like(bag_prob), reduction='none')

    def negative_bag_loss(self, cls_prob, box_prob):
zhangwenwei's avatar
zhangwenwei committed
262
        """Generate negative bag loss.
zhangwenwei's avatar
zhangwenwei committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

        Args:
            cls_prob (torch.Tensor): Classification probability
                of negative samples.
            box_prob (torch.Tensor): Bounding box probability
                of negative samples.

        Returns:
            torch.Tensor: Loss of negative samples.
        """
        prob = cls_prob * (1 - box_prob)
        prob = prob.clamp(0, 1)  # to avoid bug of BCE, check
        negative_bag_loss = prob**self.gamma * F.binary_cross_entropy(
            prob, torch.zeros_like(prob), reduction='none')
        return (1 - self.alpha) * negative_bag_loss