pointnet2_sa_ssg.py 5.94 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
import torch
from mmcv.runner import load_checkpoint
zhangwenwei's avatar
zhangwenwei committed
3
from torch import nn as nn
wuyuefeng's avatar
wuyuefeng committed
4
5
6
7
8
9

from mmdet3d.ops import PointFPModule, PointSAModule
from mmdet.models import BACKBONES


@BACKBONES.register_module()
wuyuefeng's avatar
wuyuefeng committed
10
11
class PointNet2SASSG(nn.Module):
    """PointNet2 with Single-scale grouping.
wuyuefeng's avatar
wuyuefeng committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

    Args:
        in_channels (int): input channels of point cloud.
        num_points (tuple[int]): the number of points which each SA
            module samples.
        radius (tuple[float]): sampling radii of each SA module.
        num_samples (tuple[int]): the number of samples for ball
            query in each SA module.
        sa_channels (tuple[tuple[int]]): out channels of each mlp in SA module.
        fp_channels (tuple[tuple[int]]): out channels of each mlp in FP module.
        norm_cfg (dict): config of normalization layer.
        pool_mod (str): pool method ('max' or 'avg') for SA modules.
        use_xyz (bool): whether to use xyz as a part of features.
        normalize_xyz (bool): whether to normalize xyz with radii in
            each SA module.
    """

    def __init__(self,
                 in_channels,
                 num_points=(2048, 1024, 512, 256),
                 radius=(0.2, 0.4, 0.8, 1.2),
                 num_samples=(64, 32, 16, 16),
                 sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
                              (128, 128, 256)),
                 fp_channels=((256, 256), (256, 256)),
                 norm_cfg=dict(type='BN2d'),
                 pool_mod='max',
                 use_xyz=True,
                 normalize_xyz=True):
        super().__init__()

        self.num_sa = len(sa_channels)
        self.num_fp = len(fp_channels)

        assert len(num_points) == len(radius) == len(num_samples) == len(
            sa_channels)
        assert len(sa_channels) >= len(fp_channels)
        assert pool_mod in ['max', 'avg']

        self.SA_modules = nn.ModuleList()
        sa_in_channel = in_channels - 3  # number of channels without xyz
        skip_channel_list = [sa_in_channel]

        for sa_index in range(self.num_sa):
            cur_sa_mlps = list(sa_channels[sa_index])
            cur_sa_mlps = [sa_in_channel] + cur_sa_mlps
            sa_out_channel = cur_sa_mlps[-1]

            self.SA_modules.append(
                PointSAModule(
                    num_point=num_points[sa_index],
                    radius=radius[sa_index],
                    num_sample=num_samples[sa_index],
                    mlp_channels=cur_sa_mlps,
                    norm_cfg=norm_cfg,
                    use_xyz=use_xyz,
                    pool_mod=pool_mod,
                    normalize_xyz=normalize_xyz))
            skip_channel_list.append(sa_out_channel)
            sa_in_channel = sa_out_channel

        self.FP_modules = nn.ModuleList()

        fp_source_channel = skip_channel_list.pop()
        fp_target_channel = skip_channel_list.pop()
        for fp_index in range(len(fp_channels)):
            cur_fp_mlps = list(fp_channels[fp_index])
            cur_fp_mlps = [fp_source_channel + fp_target_channel] + cur_fp_mlps
            self.FP_modules.append(PointFPModule(mlp_channels=cur_fp_mlps))
            if fp_index != len(fp_channels) - 1:
                fp_source_channel = cur_fp_mlps[-1]
                fp_target_channel = skip_channel_list.pop()

    def init_weights(self, pretrained=None):
        # Do not initialize the conv layers
        # to follow the original implementation
        if isinstance(pretrained, str):
            from mmdet3d.utils import get_root_logger
            logger = get_root_logger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)

    @staticmethod
    def _split_point_feats(points):
        """Split coordinates and features of input points.

        Args:
            points (Tensor): point coordinates with features,
                with shape (B, N, 3 + input_feature_dim).

        Returns:
            Tensor: coordinates of input points.
            Tensor: features of input points.
        """
        xyz = points[..., 0:3].contiguous()
        if points.size(-1) > 3:
            features = points[..., 3:].transpose(1, 2).contiguous()
        else:
            features = None

        return xyz, features

    def forward(self, points):
        """Forward pass.

        Args:
            points (Tensor): point coordinates with features,
                with shape (B, N, 3 + input_feature_dim).

        Returns:
            dict: outputs after SA and FP modules.
                - fp_xyz (list[Tensor]): contains the coordinates of
                    each fp features.
                - fp_features (list[Tensor]): contains the features
                    from each Feature Propagate Layers.
                - fp_indices (list[Tensor]): contains indices of the
                    input points.
        """
        xyz, features = self._split_point_feats(points)

        batch, num_points = xyz.shape[:2]
        indices = xyz.new_tensor(range(num_points)).unsqueeze(0).repeat(
            batch, 1).long()

        sa_xyz = [xyz]
        sa_features = [features]
        sa_indices = [indices]

        for i in range(self.num_sa):
            cur_xyz, cur_features, cur_indices = self.SA_modules[i](
                sa_xyz[i], sa_features[i])
            sa_xyz.append(cur_xyz)
            sa_features.append(cur_features)
            sa_indices.append(
                torch.gather(sa_indices[-1], 1, cur_indices.long()))

        fp_xyz = [sa_xyz[-1]]
        fp_features = [sa_features[-1]]
        fp_indices = [sa_indices[-1]]

        for i in range(self.num_fp):
            fp_features.append(self.FP_modules[i](
                sa_xyz[self.num_sa - i - 1], sa_xyz[self.num_sa - i],
                sa_features[self.num_sa - i - 1], fp_features[-1]))
            fp_xyz.append(sa_xyz[self.num_sa - i - 1])
            fp_indices.append(sa_indices[self.num_sa - i - 1])

        ret = dict(
            fp_xyz=fp_xyz, fp_features=fp_features, fp_indices=fp_indices)
        return ret