loading.py 13.2 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import mmcv
import numpy as np

4
from mmdet.datasets.builder import PIPELINES
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet.datasets.pipelines import LoadAnnotations
zhangwenwei's avatar
zhangwenwei committed
6
7


8
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
9
class LoadMultiViewImageFromFiles(object):
zhangwenwei's avatar
zhangwenwei committed
10
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
11
12

    Expects results['img_filename'] to be a list of filenames
zhangwenwei's avatar
zhangwenwei committed
13
    """
zhangwenwei's avatar
zhangwenwei committed
14

zhangwenwei's avatar
zhangwenwei committed
15
16
17
    def __init__(self, to_float32=False, color_type='unchanged'):
        self.to_float32 = to_float32
        self.color_type = color_type
zhangwenwei's avatar
zhangwenwei committed
18
19

    def __call__(self, results):
zhangwenwei's avatar
zhangwenwei committed
20
        filename = results['img_filename']
zhangwenwei's avatar
zhangwenwei committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
        img = np.stack(
            [mmcv.imread(name, self.color_type) for name in filename], axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)
        results['filename'] = filename
        results['img'] = img
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
zhangwenwei's avatar
zhangwenwei committed
37
38
39
        return results

    def __repr__(self):
zhangwenwei's avatar
zhangwenwei committed
40
41
        return "{} (to_float32={}, color_type='{}')".format(
            self.__class__.__name__, self.to_float32, self.color_type)
zhangwenwei's avatar
zhangwenwei committed
42
43
44
45


@PIPELINES.register_module()
class LoadPointsFromMultiSweeps(object):
zhangwenwei's avatar
zhangwenwei committed
46
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
47

zhangwenwei's avatar
zhangwenwei committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
        sweeps_num (int): number of sweeps
        load_dim (int): dimension number of the loaded points
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

    def __init__(self,
                 sweeps_num=10,
                 load_dim=5,
                 file_client_args=dict(backend='disk')):
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
63
        self.sweeps_num = sweeps_num
zhangwenwei's avatar
zhangwenwei committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        self.file_client_args = file_client_args.copy()
        self.file_client = None

    def _load_points(self, pts_filename):
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
80
81
82
83
84
85
86
87
88
89
90

    def __call__(self, results):
        points = results['points']
        points[:, 3] /= 255
        points[:, 4] = 0
        sweep_points_list = [points]
        ts = results['timestamp']

        for idx, sweep in enumerate(results['sweeps']):
            if idx >= self.sweeps_num:
                break
zhangwenwei's avatar
zhangwenwei committed
91
92
            points_sweep = self._load_points(sweep['data_path'])
            points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
zhangwenwei's avatar
zhangwenwei committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
            sweep_ts = sweep['timestamp'] / 1e6
            points_sweep[:, 3] /= 255
            points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
                'sensor2lidar_rotation'].T
            points_sweep[:, :3] += sweep['sensor2lidar_translation']
            points_sweep[:, 4] = ts - sweep_ts
            sweep_points_list.append(points_sweep)

        points = np.concatenate(sweep_points_list, axis=0)[:, [0, 1, 2, 4]]
        results['points'] = points
        return results

    def __repr__(self):
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145


@PIPELINES.register_module()
class PointSegClassMapping(object):
    """Map original semantic class to valid category ids.

    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).

    Args:
        valid_cat_ids (tuple[int): A tuple of valid category.
    """

    def __init__(self, valid_cat_ids):
        self.valid_cat_ids = valid_cat_ids

    def __call__(self, results):
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']
        neg_cls = len(self.valid_cat_ids)

        for i in range(pts_semantic_mask.shape[0]):
            if pts_semantic_mask[i] in self.valid_cat_ids:
                converted_id = self.valid_cat_ids.index(pts_semantic_mask[i])
                pts_semantic_mask[i] = converted_id
            else:
                pts_semantic_mask[i] = neg_cls

        results['pts_semantic_mask'] = pts_semantic_mask
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(valid_cat_ids={})'.format(self.valid_cat_ids)
        return repr_str


@PIPELINES.register_module()
class NormalizePointsColor(object):
zhangwenwei's avatar
zhangwenwei committed
146
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

    Normalize color of the points.

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

    def __init__(self, color_mean):
        self.color_mean = color_mean

    def __call__(self, results):
        points = results['points']
        assert points.shape[1] >= 6,\
            f'Expect points have channel >=6, got {points.shape[1]}'
        points[:, 3:6] = points[:, 3:6] - np.array(self.color_mean) / 256.0
        results['points'] = points
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(color_mean={})'.format(self.color_mean)
        return repr_str


@PIPELINES.register_module()
class LoadPointsFromFile(object):
    """Load Points From File.

    Load sunrgbd and scannet points from file.

    Args:
        shift_height (bool): Whether to use shifted height.
        load_dim (int): The dimension of the loaded points.
            Default: 6.
        use_dim (list[int]): Which dimensions of the points to be used.
            Default: [0, 1, 2]. For KITTI dataset, set use_dim=4
            or use_dim=[0, 1, 2, 3] to use the intensity dimension
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

    def __init__(self,
                 load_dim=6,
                 use_dim=[0, 1, 2],
                 shift_height=False,
                 file_client_args=dict(backend='disk')):
        self.shift_height = shift_height
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'

        self.load_dim = load_dim
        self.use_dim = use_dim
        self.file_client_args = file_client_args.copy()
        self.file_client = None

    def _load_points(self, pts_filename):
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points

    def __call__(self, results):
        pts_filename = results['pts_filename']
        points = self._load_points(pts_filename)
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
            points = np.concatenate([points, np.expand_dims(height, 1)], 1)
        results['points'] = points
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(shift_height={})'.format(self.shift_height)
        repr_str += '(mean_color={})'.format(self.color_mean)
        repr_str += '(load_dim={})'.format(self.load_dim)
        repr_str += '(use_dim={})'.format(self.use_dim)
        return repr_str


@PIPELINES.register_module()
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

    Args:
        with_bbox_3d (bool, optional): Whether to load 3D boxes.
            Defaults to True.
        with_label_3d (bool, optional): Whether to load 3D labels.
            Defaults to True.
        with_mask_3d (bool, optional): Whether to load 3D instance masks.
            for points. Defaults to False.
        with_seg_3d (bool, optional): Whether to load 3D semantic masks.
            for points. Defaults to False.
        with_bbox (bool, optional): Whether to load 2D boxes.
            Defaults to False.
        with_label (bool, optional): Whether to load 2D labels.
            Defaults to False.
        with_mask (bool, optional): Whether to load 2D instance masks.
            Defaults to False.
        with_seg (bool, optional): Whether to load 2D semantic masks.
            Defaults to False.
        poly2mask (bool, optional): Whether to convert polygon annotations
            to bitmasks. Defaults to True.
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

    def __init__(self,
                 with_bbox_3d=True,
                 with_label_3d=True,
                 with_mask_3d=False,
                 with_seg_3d=False,
                 with_bbox=False,
                 with_label=False,
                 with_mask=False,
                 with_seg=False,
                 poly2mask=True,
                 file_client_args=dict(backend='disk')):
        super().__init__(
            with_bbox,
            with_label,
            with_mask,
            with_seg,
            poly2mask,
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
        self.with_label_3d = with_label_3d
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d

    def _load_bboxes_3d(self, results):
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        results['bbox3d_fields'].append('gt_bboxes_3d')
        return results

    def _load_labels_3d(self, results):
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

    def _load_masks_3d(self, results):
        pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int)
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(
                pts_instance_mask_path, dtype=np.long)

        results['pts_instance_mask'] = pts_instance_mask
        results['pts_mask_fields'].append('pts_instance_mask')
        return results

    def _load_semantic_seg_3d(self, results):
        pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
            pts_semantic_mask = np.frombuffer(mask_bytes, dtype=np.int).copy()
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(
                pts_semantic_mask_path, dtype=np.long)

        results['pts_semantic_mask'] = pts_semantic_mask
        results['pts_seg_fields'].append('pts_semantic_mask')
        return results

    def __call__(self, results):
        results = super().__call__(results)
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
            if results is None:
                return None
        if self.with_label_3d:
            results = self._load_labels_3d(results)
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

    def __repr__(self):
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d},\n'
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d},\n'
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d},\n'
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d},\n'
        repr_str += f'{indent_str}with_bbox={self.with_bbox},\n'
        repr_str += f'{indent_str}with_label={self.with_label},\n'
        repr_str += f'{indent_str}with_mask={self.with_mask},\n'
        repr_str += f'{indent_str}with_seg={self.with_seg},\n'
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str