data_augment_utils.py 13.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
import numba
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
import warnings
zww's avatar
zww committed
4
from numba.errors import NumbaPerformanceWarning
zhangwenwei's avatar
zhangwenwei committed
5
6
7

from mmdet3d.core.bbox import box_np_ops

wuyuefeng's avatar
wuyuefeng committed
8
warnings.filterwarnings('ignore', category=NumbaPerformanceWarning)
zww's avatar
zww committed
9

zhangwenwei's avatar
zhangwenwei committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

@numba.njit
def _rotation_box2d_jit_(corners, angle, rot_mat_T):
    rot_sin = np.sin(angle)
    rot_cos = np.cos(angle)
    rot_mat_T[0, 0] = rot_cos
    rot_mat_T[0, 1] = -rot_sin
    rot_mat_T[1, 0] = rot_sin
    rot_mat_T[1, 1] = rot_cos
    corners[:] = corners @ rot_mat_T


@numba.jit(nopython=True)
def box_collision_test(boxes, qboxes, clockwise=True):
    N = boxes.shape[0]
    K = qboxes.shape[0]
    ret = np.zeros((N, K), dtype=np.bool_)
    slices = np.array([1, 2, 3, 0])
    lines_boxes = np.stack((boxes, boxes[:, slices, :]),
                           axis=2)  # [N, 4, 2(line), 2(xy)]
    lines_qboxes = np.stack((qboxes, qboxes[:, slices, :]), axis=2)
    # vec = np.zeros((2,), dtype=boxes.dtype)
    boxes_standup = box_np_ops.corner_to_standup_nd_jit(boxes)
    qboxes_standup = box_np_ops.corner_to_standup_nd_jit(qboxes)
    for i in range(N):
        for j in range(K):
            # calculate standup first
            iw = (
                min(boxes_standup[i, 2], qboxes_standup[j, 2]) -
                max(boxes_standup[i, 0], qboxes_standup[j, 0]))
            if iw > 0:
                ih = (
                    min(boxes_standup[i, 3], qboxes_standup[j, 3]) -
                    max(boxes_standup[i, 1], qboxes_standup[j, 1]))
                if ih > 0:
                    for k in range(4):
zhangwenwei's avatar
zhangwenwei committed
46
                        for box_l in range(4):
zhangwenwei's avatar
zhangwenwei committed
47
48
                            A = lines_boxes[i, k, 0]
                            B = lines_boxes[i, k, 1]
zhangwenwei's avatar
zhangwenwei committed
49
50
                            C = lines_qboxes[j, box_l, 0]
                            D = lines_qboxes[j, box_l, 1]
zhangwenwei's avatar
zhangwenwei committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
                            acd = (D[1] - A[1]) * (C[0] -
                                                   A[0]) > (C[1] - A[1]) * (
                                                       D[0] - A[0])
                            bcd = (D[1] - B[1]) * (C[0] -
                                                   B[0]) > (C[1] - B[1]) * (
                                                       D[0] - B[0])
                            if acd != bcd:
                                abc = (C[1] - A[1]) * (B[0] - A[0]) > (
                                    B[1] - A[1]) * (
                                        C[0] - A[0])
                                abd = (D[1] - A[1]) * (B[0] - A[0]) > (
                                    B[1] - A[1]) * (
                                        D[0] - A[0])
                                if abc != abd:
                                    ret[i, j] = True  # collision.
                                    break
                        if ret[i, j] is True:
                            break
                    if ret[i, j] is False:
                        # now check complete overlap.
                        # box overlap qbox:
                        box_overlap_qbox = True
zhangwenwei's avatar
zhangwenwei committed
73
                        for box_l in range(4):  # point l in qboxes
zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
78
                            for k in range(4):  # corner k in boxes
                                vec = boxes[i, k] - boxes[i, (k + 1) % 4]
                                if clockwise:
                                    vec = -vec
                                cross = vec[1] * (
zhangwenwei's avatar
zhangwenwei committed
79
                                    boxes[i, k, 0] - qboxes[j, box_l, 0])
zhangwenwei's avatar
zhangwenwei committed
80
                                cross -= vec[0] * (
zhangwenwei's avatar
zhangwenwei committed
81
                                    boxes[i, k, 1] - qboxes[j, box_l, 1])
zhangwenwei's avatar
zhangwenwei committed
82
83
84
85
86
87
88
89
                                if cross >= 0:
                                    box_overlap_qbox = False
                                    break
                            if box_overlap_qbox is False:
                                break

                        if box_overlap_qbox is False:
                            qbox_overlap_box = True
zhangwenwei's avatar
zhangwenwei committed
90
                            for box_l in range(4):  # point box_l in boxes
zhangwenwei's avatar
zhangwenwei committed
91
92
93
94
95
                                for k in range(4):  # corner k in qboxes
                                    vec = qboxes[j, k] - qboxes[j, (k + 1) % 4]
                                    if clockwise:
                                        vec = -vec
                                    cross = vec[1] * (
zhangwenwei's avatar
zhangwenwei committed
96
                                        qboxes[j, k, 0] - boxes[i, box_l, 0])
zhangwenwei's avatar
zhangwenwei committed
97
                                    cross -= vec[0] * (
zhangwenwei's avatar
zhangwenwei committed
98
                                        qboxes[j, k, 1] - boxes[i, box_l, 1])
zhangwenwei's avatar
zhangwenwei committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
                                    if cross >= 0:  #
                                        qbox_overlap_box = False
                                        break
                                if qbox_overlap_box is False:
                                    break
                            if qbox_overlap_box:
                                ret[i, j] = True  # collision.
                        else:
                            ret[i, j] = True  # collision.
    return ret


@numba.njit
def noise_per_box(boxes, valid_mask, loc_noises, rot_noises):
    # boxes: [N, 5]
    # valid_mask: [N]
    # loc_noises: [N, M, 3]
    # rot_noises: [N, M]
    num_boxes = boxes.shape[0]
    num_tests = loc_noises.shape[1]
    box_corners = box_np_ops.box2d_to_corner_jit(boxes)
    current_corners = np.zeros((4, 2), dtype=boxes.dtype)
    rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype)
    success_mask = -np.ones((num_boxes, ), dtype=np.int64)
    # print(valid_mask)
    for i in range(num_boxes):
        if valid_mask[i]:
            for j in range(num_tests):
                current_corners[:] = box_corners[i]
                current_corners -= boxes[i, :2]
                _rotation_box2d_jit_(current_corners, rot_noises[i, j],
                                     rot_mat_T)
                current_corners += boxes[i, :2] + loc_noises[i, j, :2]
                coll_mat = box_collision_test(
                    current_corners.reshape(1, 4, 2), box_corners)
                coll_mat[0, i] = False
                # print(coll_mat)
                if not coll_mat.any():
                    success_mask[i] = j
                    box_corners[i] = current_corners
                    break
    return success_mask


@numba.njit
def noise_per_box_v2_(boxes, valid_mask, loc_noises, rot_noises,
                      global_rot_noises):
    # boxes: [N, 5]
    # valid_mask: [N]
    # loc_noises: [N, M, 3]
    # rot_noises: [N, M]
    num_boxes = boxes.shape[0]
    num_tests = loc_noises.shape[1]
    box_corners = box_np_ops.box2d_to_corner_jit(boxes)
    current_corners = np.zeros((4, 2), dtype=boxes.dtype)
    current_box = np.zeros((1, 5), dtype=boxes.dtype)
    rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype)
    dst_pos = np.zeros((2, ), dtype=boxes.dtype)
    success_mask = -np.ones((num_boxes, ), dtype=np.int64)
    corners_norm = np.zeros((4, 2), dtype=boxes.dtype)
    corners_norm[1, 1] = 1.0
    corners_norm[2] = 1.0
    corners_norm[3, 0] = 1.0
    corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype)
    corners_norm = corners_norm.reshape(4, 2)
    for i in range(num_boxes):
        if valid_mask[i]:
            for j in range(num_tests):
                current_box[0, :] = boxes[i]
                current_radius = np.sqrt(boxes[i, 0]**2 + boxes[i, 1]**2)
                current_grot = np.arctan2(boxes[i, 0], boxes[i, 1])
                dst_grot = current_grot + global_rot_noises[i, j]
                dst_pos[0] = current_radius * np.sin(dst_grot)
                dst_pos[1] = current_radius * np.cos(dst_grot)
                current_box[0, :2] = dst_pos
                current_box[0, -1] += (dst_grot - current_grot)

                rot_sin = np.sin(current_box[0, -1])
                rot_cos = np.cos(current_box[0, -1])
                rot_mat_T[0, 0] = rot_cos
                rot_mat_T[0, 1] = -rot_sin
                rot_mat_T[1, 0] = rot_sin
                rot_mat_T[1, 1] = rot_cos
                current_corners[:] = current_box[
                    0, 2:4] * corners_norm @ rot_mat_T + current_box[0, :2]
                current_corners -= current_box[0, :2]
                _rotation_box2d_jit_(current_corners, rot_noises[i, j],
                                     rot_mat_T)
                current_corners += current_box[0, :2] + loc_noises[i, j, :2]
                coll_mat = box_collision_test(
                    current_corners.reshape(1, 4, 2), box_corners)
                coll_mat[0, i] = False
                if not coll_mat.any():
                    success_mask[i] = j
                    box_corners[i] = current_corners
                    loc_noises[i, j, :2] += (dst_pos - boxes[i, :2])
                    rot_noises[i, j] += (dst_grot - current_grot)
                    break
    return success_mask


def _select_transform(transform, indices):
    result = np.zeros((transform.shape[0], *transform.shape[2:]),
                      dtype=transform.dtype)
    for i in range(transform.shape[0]):
        if indices[i] != -1:
            result[i] = transform[i, indices[i]]
    return result


@numba.njit
def _rotation_matrix_3d_(rot_mat_T, angle, axis):
    rot_sin = np.sin(angle)
    rot_cos = np.cos(angle)
    rot_mat_T[:] = np.eye(3)
    if axis == 1:
        rot_mat_T[0, 0] = rot_cos
        rot_mat_T[0, 2] = -rot_sin
        rot_mat_T[2, 0] = rot_sin
        rot_mat_T[2, 2] = rot_cos
    elif axis == 2 or axis == -1:
        rot_mat_T[0, 0] = rot_cos
        rot_mat_T[0, 1] = -rot_sin
        rot_mat_T[1, 0] = rot_sin
        rot_mat_T[1, 1] = rot_cos
    elif axis == 0:
        rot_mat_T[1, 1] = rot_cos
        rot_mat_T[1, 2] = -rot_sin
        rot_mat_T[2, 1] = rot_sin
        rot_mat_T[2, 2] = rot_cos


@numba.njit
def points_transform_(points, centers, point_masks, loc_transform,
                      rot_transform, valid_mask):
    num_box = centers.shape[0]
    num_points = points.shape[0]
    rot_mat_T = np.zeros((num_box, 3, 3), dtype=points.dtype)
    for i in range(num_box):
        _rotation_matrix_3d_(rot_mat_T[i], rot_transform[i], 2)
    for i in range(num_points):
        for j in range(num_box):
            if valid_mask[j]:
                if point_masks[i, j] == 1:
                    points[i, :3] -= centers[j, :3]
                    points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j]
                    points[i, :3] += centers[j, :3]
                    points[i, :3] += loc_transform[j]
                    break  # only apply first box's transform


@numba.njit
def box3d_transform_(boxes, loc_transform, rot_transform, valid_mask):
    num_box = boxes.shape[0]
    for i in range(num_box):
        if valid_mask[i]:
            boxes[i, :3] += loc_transform[i]
            boxes[i, 6] += rot_transform[i]


def noise_per_object_v3_(gt_boxes,
                         points=None,
                         valid_mask=None,
                         rotation_perturb=np.pi / 4,
                         center_noise_std=1.0,
                         global_random_rot_range=np.pi / 4,
                         num_try=100):
zhangwenwei's avatar
zhangwenwei committed
266
267
    """random rotate or remove each groundtrutn independently. use kitti viewer
    to test this function points_transform_
zhangwenwei's avatar
zhangwenwei committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    Args:
        gt_boxes: [N, 7], gt box in lidar.points_transform_
        points: [M, 4], point cloud in lidar.
    """
    num_boxes = gt_boxes.shape[0]
    if not isinstance(rotation_perturb, (list, tuple, np.ndarray)):
        rotation_perturb = [-rotation_perturb, rotation_perturb]
    if not isinstance(global_random_rot_range, (list, tuple, np.ndarray)):
        global_random_rot_range = [
            -global_random_rot_range, global_random_rot_range
        ]
    enable_grot = np.abs(global_random_rot_range[0] -
                         global_random_rot_range[1]) >= 1e-3

    if not isinstance(center_noise_std, (list, tuple, np.ndarray)):
        center_noise_std = [
            center_noise_std, center_noise_std, center_noise_std
        ]
    if valid_mask is None:
        valid_mask = np.ones((num_boxes, ), dtype=np.bool_)
    center_noise_std = np.array(center_noise_std, dtype=gt_boxes.dtype)

    loc_noises = np.random.normal(
        scale=center_noise_std, size=[num_boxes, num_try, 3])
    rot_noises = np.random.uniform(
        rotation_perturb[0], rotation_perturb[1], size=[num_boxes, num_try])
    gt_grots = np.arctan2(gt_boxes[:, 0], gt_boxes[:, 1])
    grot_lowers = global_random_rot_range[0] - gt_grots
    grot_uppers = global_random_rot_range[1] - gt_grots
    global_rot_noises = np.random.uniform(
        grot_lowers[..., np.newaxis],
        grot_uppers[..., np.newaxis],
        size=[num_boxes, num_try])

wuyuefeng's avatar
wuyuefeng committed
303
    origin = (0.5, 0.5, 0)
zhangwenwei's avatar
zhangwenwei committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    gt_box_corners = box_np_ops.center_to_corner_box3d(
        gt_boxes[:, :3],
        gt_boxes[:, 3:6],
        gt_boxes[:, 6],
        origin=origin,
        axis=2)

    # TODO: rewrite this noise box function?
    if not enable_grot:
        selected_noise = noise_per_box(gt_boxes[:, [0, 1, 3, 4, 6]],
                                       valid_mask, loc_noises, rot_noises)
    else:
        selected_noise = noise_per_box_v2_(gt_boxes[:, [0, 1, 3, 4, 6]],
                                           valid_mask, loc_noises, rot_noises,
                                           global_rot_noises)

    loc_transforms = _select_transform(loc_noises, selected_noise)
    rot_transforms = _select_transform(rot_noises, selected_noise)
    surfaces = box_np_ops.corner_to_surfaces_3d_jit(gt_box_corners)
    if points is not None:
        # TODO: replace this points_in_convex function by my tools?
        point_masks = box_np_ops.points_in_convex_polygon_3d_jit(
            points[:, :3], surfaces)
        points_transform_(points, gt_boxes[:, :3], point_masks, loc_transforms,
                          rot_transforms, valid_mask)

    box3d_transform_(gt_boxes, loc_transforms, rot_transforms, valid_mask)