test_dataset_wrappers.py 2.78 KB
Newer Older
yinchimaoliang's avatar
yinchimaoliang committed
1
import numpy as np
2
import torch
yinchimaoliang's avatar
yinchimaoliang committed
3
4
5
6
7

from mmdet3d.datasets.builder import build_dataset


def test_getitem():
8
9
    np.random.seed(1)
    torch.manual_seed(1)
yinchimaoliang's avatar
yinchimaoliang committed
10
11
12
13
14
15
16
17
18
    point_cloud_range = [-50, -50, -5, 50, 50, 3]
    file_client_args = dict(backend='disk')
    class_names = [
        'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
        'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
    ]
    pipeline = [
        dict(
            type='LoadPointsFromFile',
19
            coord_type='LIDAR',
yinchimaoliang's avatar
yinchimaoliang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            load_dim=5,
            use_dim=5,
            file_client_args=file_client_args),
        dict(
            type='LoadPointsFromMultiSweeps',
            sweeps_num=9,
            use_dim=[0, 1, 2, 3, 4],
            file_client_args=file_client_args,
            pad_empty_sweeps=True,
            remove_close=True,
            test_mode=True),
        dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
        # dict(type='ObjectSample', db_sampler=db_sampler),
        dict(
            type='GlobalRotScaleTrans',
            rot_range=[-0.3925, 0.3925],
            scale_ratio_range=[0.95, 1.05],
            translation_std=[0, 0, 0]),
        dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
        dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
        dict(type='ObjectNameFilter', classes=class_names),
        dict(type='PointShuffle'),
        dict(type='DefaultFormatBundle3D', class_names=class_names),
        dict(
            type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
    ]
    input_modality = dict(
        use_lidar=True,
        use_camera=False,
        use_radar=False,
        use_map=False,
        use_external=False)
    dataset_cfg = dict(
        type='CBGSDataset',
        dataset=dict(
            type='NuScenesDataset',
            data_root='tests/data/nuscenes',
            ann_file='tests/data/nuscenes/nus_info.pkl',
            pipeline=pipeline,
            classes=class_names,
            modality=input_modality,
            test_mode=False,
            use_valid_flag=True,
            # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
            # and box_type_3d='Depth' in sunrgbd and scannet dataset.
            box_type_3d='LiDAR'))
    nus_dataset = build_dataset(dataset_cfg)
68
69
    assert len(nus_dataset) == 20

70
    data = nus_dataset[0]
71
72
    assert data['img_metas'].data['flip'] is True
    assert data['img_metas'].data['pcd_horizontal_flip'] is True
yinchimaoliang's avatar
yinchimaoliang committed
73
    assert data['points']._data.shape == (537, 5)
74
75
76
77
78

    data = nus_dataset[2]
    assert data['img_metas'].data['flip'] is False
    assert data['img_metas'].data['pcd_horizontal_flip'] is False
    assert data['points']._data.shape == (901, 5)