voxel_encoder.py 18.8 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import torch
2
from mmcv.cnn import build_norm_layer
zhangwenwei's avatar
zhangwenwei committed
3
4
5
6
7
from torch import nn

from mmdet3d.ops import DynamicScatter
from .. import builder
from ..registry import VOXEL_ENCODERS
zhangwenwei's avatar
zhangwenwei committed
8
from .utils import VFELayer, get_paddings_indicator
zhangwenwei's avatar
zhangwenwei committed
9
10


11
@VOXEL_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
13
class HardSimpleVFE(nn.Module):
    """Simple voxel feature encoder used in SECOND
zhangwenwei's avatar
zhangwenwei committed
14

zhangwenwei's avatar
zhangwenwei committed
15
16
    It simply averages the values of points in a voxel.
    """
zhangwenwei's avatar
zhangwenwei committed
17

zhangwenwei's avatar
zhangwenwei committed
18
19
    def __init__(self):
        super(HardSimpleVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
20
21
22
23
24
25
26
27
28

    def forward(self, features, num_points, coors):
        # features: [concated_num_points, num_voxel_size, 3(4)]
        # num_points: [concated_num_points]
        points_mean = features[:, :, :4].sum(
            dim=1, keepdim=False) / num_points.type_as(features).view(-1, 1)
        return points_mean.contiguous()


29
@VOXEL_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
30
31
32
33
34
35
36
37
38
39
class DynamicSimpleVFE(nn.Module):
    """Simple dynamic voxel feature encoder used in DV-SECOND

    It simply averages the values of points in a voxel.
    But the number of points in a voxel is dynamic and varies.

    Args:
        voxel_size (tupe[float]): Size of a single voxel
        point_cloud_range (tuple[float]): Range of the point cloud and voxels
    """
zhangwenwei's avatar
zhangwenwei committed
40
41
42
43

    def __init__(self,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1)):
zhangwenwei's avatar
zhangwenwei committed
44
        super(DynamicSimpleVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
45
46
47
48
49
50
51
52
53
54
        self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)

    @torch.no_grad()
    def forward(self, features, coors):
        # This function is used from the start of the voxelnet
        # num_points: [concated_num_points]
        features, features_coors = self.scatter(features, coors)
        return features, features_coors


55
@VOXEL_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
56
class DynamicVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    """Dynamic Voxel feature encoder used in DV-SECOND

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.
    The number of points inside the voxel varies.

    Args:
        in_channels (int): Input channels of VFE. Defaults to 4.
        feat_channels (list(int)): Channels of features in VFE.
        with_distance (bool): Whether to use the L2 distance of points to the
            origin point. Default False.
        with_cluster_center (bool): Whether to use the distance to cluster
            center of points inside a voxel. Default to False.
        with_voxel_center (bool): Whether to use the distance to center of
            voxel for each points inside a voxel. Default to False.
        voxel_size (tuple[float]): Size of a single voxel. Default to
            (0.2, 0.2, 4).
        point_cloud_range (tuple[float]): The range of points or voxels.
            Default to (0, -40, -3, 70.4, 40, 1).
        norm_cfg (dict): Config dict of normalization layers.
        mode (str): The mode when pooling features of points inside a voxel.
            Available options include 'max' and 'avg'. Default to 'max'.
        fusion_layer (dict | None): The config dict of fusion layer used in
            multi-modal detectors. Default to None.
        return_point_feats (bool): Whether to return the features of each
            points. Default to False.
    """
zhangwenwei's avatar
zhangwenwei committed
84
85

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
86
87
                 in_channels=4,
                 feat_channels=[],
zhangwenwei's avatar
zhangwenwei committed
88
89
90
91
92
93
94
95
96
97
                 with_distance=False,
                 with_cluster_center=False,
                 with_voxel_center=False,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode='max',
                 fusion_layer=None,
                 return_point_feats=False):
        super(DynamicVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
98
99
        assert mode in ['avg', 'max']
        assert len(feat_channels) > 0
zhangwenwei's avatar
zhangwenwei committed
100
        if with_cluster_center:
zhangwenwei's avatar
zhangwenwei committed
101
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
102
        if with_voxel_center:
zhangwenwei's avatar
zhangwenwei committed
103
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
104
        if with_distance:
zhangwenwei's avatar
zhangwenwei committed
105
106
            in_channels += 3
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        # Need pillar (voxel) size and x/y offset in order to calculate offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range
        self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)

zhangwenwei's avatar
zhangwenwei committed
122
        feat_channels = [self.in_channels] + list(feat_channels)
zhangwenwei's avatar
zhangwenwei committed
123
        vfe_layers = []
zhangwenwei's avatar
zhangwenwei committed
124
125
126
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
zhangwenwei's avatar
zhangwenwei committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
            if i > 0:
                in_filters *= 2
            norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
            vfe_layers.append(
                nn.Sequential(
                    nn.Linear(in_filters, out_filters, bias=False), norm_layer,
                    nn.ReLU(inplace=True)))
            self.vfe_layers = nn.ModuleList(vfe_layers)
        self.num_vfe = len(vfe_layers)
        self.vfe_scatter = DynamicScatter(voxel_size, point_cloud_range,
                                          (mode != 'max'))
        self.cluster_scatter = DynamicScatter(
            voxel_size, point_cloud_range, average_points=True)
        self.fusion_layer = None
        if fusion_layer is not None:
            self.fusion_layer = builder.build_fusion_layer(fusion_layer)

    def map_voxel_center_to_point(self, pts_coors, voxel_mean, voxel_coors):
zhangwenwei's avatar
zhangwenwei committed
145
146
147
148
149
150
151
152
153
154
        """Map voxel features to its corresponding points.

        Args:
            pts_coors (torch.Tensor): Voxel coordinate of each point.
            voxel_mean (torch.Tensor): Voxel features to be mapped.
            voxel_coors (torch.Tensor): Coordinates of valid voxels

        Returns:
            torch.Tensor: Features or centers of each point.
        """
zhangwenwei's avatar
zhangwenwei committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        # Step 1: scatter voxel into canvas
        # Calculate necessary things for canvas creation
        canvas_z = int(
            (self.point_cloud_range[5] - self.point_cloud_range[2]) / self.vz)
        canvas_y = int(
            (self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy)
        canvas_x = int(
            (self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx)
        # canvas_channel = voxel_mean.size(1)
        batch_size = pts_coors[-1, 0] + 1
        canvas_len = canvas_z * canvas_y * canvas_x * batch_size
        # Create the canvas for this sample
        canvas = voxel_mean.new_zeros(canvas_len, dtype=torch.long)
        # Only include non-empty pillars
        indices = (
            voxel_coors[:, 0] * canvas_z * canvas_y * canvas_x +
            voxel_coors[:, 1] * canvas_y * canvas_x +
            voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3])
        # Scatter the blob back to the canvas
        canvas[indices.long()] = torch.arange(
            start=0, end=voxel_mean.size(0), device=voxel_mean.device)

        # Step 2: get voxel mean for each point
        voxel_index = (
            pts_coors[:, 0] * canvas_z * canvas_y * canvas_x +
            pts_coors[:, 1] * canvas_y * canvas_x +
            pts_coors[:, 2] * canvas_x + pts_coors[:, 3])
        voxel_inds = canvas[voxel_index.long()]
        center_per_point = voxel_mean[voxel_inds, ...]
        return center_per_point

    def forward(self,
                features,
                coors,
                points=None,
                img_feats=None,
                img_meta=None):
zhangwenwei's avatar
zhangwenwei committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        """Forward functions

        Args:
            features (torch.Tensor): Features of voxels, shape is NxC.
            coors (torch.Tensor): Coordinates of voxels, shape is  Nx(1+NDim).
            points (list[torch.Tensor], optional): Raw points used to guide the
                multi-modality fusion. Defaults to None.
            img_feats (list[torch.Tensor], optional): Image fetures used for
                multi-modality fusion. Defaults to None.
            img_meta (dict, optional): [description]. Defaults to None.

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels.
zhangwenwei's avatar
zhangwenwei committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            voxel_mean, mean_coors = self.cluster_scatter(features, coors)
            points_mean = self.map_voxel_center_to_point(
                coors, voxel_mean, mean_coors)
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :3] - points_mean[:, :3]
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(size=(features.size(0), 3))
            f_center[:, 0] = features[:, 0] - (
                coors[:, 3].type_as(features) * self.vx + self.x_offset)
            f_center[:, 1] = features[:, 1] - (
                coors[:, 2].type_as(features) * self.vy + self.y_offset)
            f_center[:, 2] = features[:, 2] - (
                coors[:, 1].type_as(features) * self.vz + self.z_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        features = torch.cat(features_ls, dim=-1)
        for i, vfe in enumerate(self.vfe_layers):
            point_feats = vfe(features)
            if (i == len(self.vfe_layers) - 1 and self.fusion_layer is not None
                    and img_feats is not None):
                point_feats = self.fusion_layer(img_feats, points, point_feats,
                                                img_meta)
            voxel_feats, voxel_coors = self.vfe_scatter(point_feats, coors)
            if i != len(self.vfe_layers) - 1:
                # need to concat voxel feats if it is not the last vfe
                feat_per_point = self.map_voxel_center_to_point(
                    coors, voxel_feats, voxel_coors)
                features = torch.cat([point_feats, feat_per_point], dim=1)

        if self.return_point_feats:
            return point_feats
        return voxel_feats, voxel_coors


253
@VOXEL_ENCODERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
254
class HardVFE(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    """Voxel feature encoder used in DV-SECOND

    It encodes features of voxels and their points. It could also fuse
    image feature into voxel features in a point-wise manner.

    Args:
        in_channels (int): Input channels of VFE. Defaults to 4.
        feat_channels (list(int)): Channels of features in VFE.
        with_distance (bool): Whether to use the L2 distance of points to the
            origin point. Default False.
        with_cluster_center (bool): Whether to use the distance to cluster
            center of points inside a voxel. Default to False.
        with_voxel_center (bool): Whether to use the distance to center of
            voxel for each points inside a voxel. Default to False.
        voxel_size (tuple[float]): Size of a single voxel. Default to
            (0.2, 0.2, 4).
        point_cloud_range (tuple[float]): The range of points or voxels.
            Default to (0, -40, -3, 70.4, 40, 1).
        norm_cfg (dict): Config dict of normalization layers.
        mode (str): The mode when pooling features of points inside a voxel.
            Available options include 'max' and 'avg'. Default to 'max'.
        fusion_layer (dict | None): The config dict of fusion layer used in
            multi-modal detectors. Default to None.
        return_point_feats (bool): Whether to return the features of each
            points. Default to False.
    """
zhangwenwei's avatar
zhangwenwei committed
281
282

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
283
284
                 in_channels=4,
                 feat_channels=[],
zhangwenwei's avatar
zhangwenwei committed
285
286
287
288
289
290
291
292
293
294
                 with_distance=False,
                 with_cluster_center=False,
                 with_voxel_center=False,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode='max',
                 fusion_layer=None,
                 return_point_feats=False):
        super(HardVFE, self).__init__()
zhangwenwei's avatar
zhangwenwei committed
295
        assert len(feat_channels) > 0
zhangwenwei's avatar
zhangwenwei committed
296
        if with_cluster_center:
zhangwenwei's avatar
zhangwenwei committed
297
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
298
        if with_voxel_center:
zhangwenwei's avatar
zhangwenwei committed
299
            in_channels += 3
zhangwenwei's avatar
zhangwenwei committed
300
        if with_distance:
zhangwenwei's avatar
zhangwenwei committed
301
302
            in_channels += 3
        self.in_channels = in_channels
zhangwenwei's avatar
zhangwenwei committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center
        self.return_point_feats = return_point_feats

        # Need pillar (voxel) size and x/y offset to calculate pillar offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]
        self.point_cloud_range = point_cloud_range
        self.scatter = DynamicScatter(voxel_size, point_cloud_range, True)

zhangwenwei's avatar
zhangwenwei committed
318
        feat_channels = [self.in_channels] + list(feat_channels)
zhangwenwei's avatar
zhangwenwei committed
319
        vfe_layers = []
zhangwenwei's avatar
zhangwenwei committed
320
321
322
        for i in range(len(feat_channels) - 1):
            in_filters = feat_channels[i]
            out_filters = feat_channels[i + 1]
zhangwenwei's avatar
zhangwenwei committed
323
324
325
326
            if i > 0:
                in_filters *= 2
            # TODO: pass norm_cfg to VFE
            # norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
zhangwenwei's avatar
zhangwenwei committed
327
            if i == (len(feat_channels) - 2):
zhangwenwei's avatar
zhangwenwei committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
                cat_max = False
                max_out = True
                if fusion_layer:
                    max_out = False
            else:
                max_out = True
                cat_max = True
            vfe_layers.append(
                VFELayer(
                    in_filters,
                    out_filters,
                    norm_cfg=norm_cfg,
                    max_out=max_out,
                    cat_max=cat_max))
            self.vfe_layers = nn.ModuleList(vfe_layers)
        self.num_vfe = len(vfe_layers)

        self.fusion_layer = None
        if fusion_layer is not None:
            self.fusion_layer = builder.build_fusion_layer(fusion_layer)

    def forward(self,
                features,
                num_points,
                coors,
                img_feats=None,
                img_meta=None):
zhangwenwei's avatar
zhangwenwei committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        """Forward functions

        Args:
            features (torch.Tensor): Features of voxels, shape is MxNxC.
            num_points (torch.Tensor): Number of points in each voxel.
            coors (torch.Tensor): Coordinates of voxels, shape is Mx(1+NDim).
            img_feats (list[torch.Tensor], optional): Image fetures used for
                multi-modality fusion. Defaults to None.
            img_meta (dict, optional): [description]. Defaults to None.

        Returns:
            tuple: If `return_point_feats` is False, returns voxel features and
                its coordinates. If `return_point_feats` is True, returns
                feature of each points inside voxels.
zhangwenwei's avatar
zhangwenwei committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            points_mean = (
                features[:, :, :3].sum(dim=1, keepdim=True) /
                num_points.type_as(features).view(-1, 1, 1))
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :, :3] - points_mean
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(
                size=(features.size(0), features.size(1), 3))
            f_center[:, :, 0] = features[:, :, 0] - (
                coors[:, 3].type_as(features).unsqueeze(1) * self.vx +
                self.x_offset)
            f_center[:, :, 1] = features[:, :, 1] - (
                coors[:, 2].type_as(features).unsqueeze(1) * self.vy +
                self.y_offset)
            f_center[:, :, 2] = features[:, :, 2] - (
                coors[:, 1].type_as(features).unsqueeze(1) * self.vz +
                self.z_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        voxel_feats = torch.cat(features_ls, dim=-1)
        # The feature decorations were calculated without regard to whether
        # pillar was empty.
        # Need to ensure that empty voxels remain set to zeros.
        voxel_count = voxel_feats.shape[1]
        mask = get_paddings_indicator(num_points, voxel_count, axis=0)
        voxel_feats *= mask.unsqueeze(-1).type_as(voxel_feats)

        for i, vfe in enumerate(self.vfe_layers):
            voxel_feats = vfe(voxel_feats)
zhangwenwei's avatar
zhangwenwei committed
410

zhangwenwei's avatar
zhangwenwei committed
411
412
413
        if (self.fusion_layer is not None and img_feats is not None):
            voxel_feats = self.fusion_with_mask(features, mask, voxel_feats,
                                                coors, img_feats, img_meta)
zhangwenwei's avatar
zhangwenwei committed
414

zhangwenwei's avatar
zhangwenwei committed
415
416
417
418
        return voxel_feats

    def fusion_with_mask(self, features, mask, voxel_feats, coors, img_feats,
                         img_meta):
zhangwenwei's avatar
zhangwenwei committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        """Fuse image and point features with mask.

        Args:
            features (torch.Tensor): Features of voxel, usually it is the
                values of points in voxels.
            mask (torch.Tensor): Mask indicates valid features in each voxel.
            voxel_feats (torch.Tensor): Features of voxels.
            coors (torch.Tensor): Coordinates of each single voxel.
            img_feats (list[torch.Tensor]): Multi-scale feature maps of image.
            img_meta (list(dict)): Meta information of image and points.

        Returns:
            torch.Tensor: Fused features of each voxel.
        """
zhangwenwei's avatar
zhangwenwei committed
433
434
435
436
437
438
439
440
441
442
        # the features is consist of a batch of points
        batch_size = coors[-1, 0] + 1
        points = []
        for i in range(batch_size):
            single_mask = (coors[:, 0] == i)
            points.append(features[single_mask][mask[single_mask]])

        point_feats = voxel_feats[mask]
        point_feats = self.fusion_layer(img_feats, points, point_feats,
                                        img_meta)
zhangwenwei's avatar
zhangwenwei committed
443

zhangwenwei's avatar
zhangwenwei committed
444
445
446
447
448
        voxel_canvas = voxel_feats.new_zeros(
            size=(voxel_feats.size(0), voxel_feats.size(1),
                  point_feats.size(-1)))
        voxel_canvas[mask] = point_feats
        out = torch.max(voxel_canvas, dim=1)[0]
zhangwenwei's avatar
zhangwenwei committed
449

zhangwenwei's avatar
zhangwenwei committed
450
        return out