mmdet3d_handler.py 4.13 KB
Newer Older
1
2
3
# Copyright (c) OpenMMLab. All rights reserved.
import base64
import os
4
5

import numpy as np
6
7
8
9
import torch
from ts.torch_handler.base_handler import BaseHandler

from mmdet3d.apis import inference_detector, init_model
zhangshilong's avatar
zhangshilong committed
10
from mmdet3d.structures.points import get_points_type
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107


class MMdet3dHandler(BaseHandler):
    """MMDetection3D Handler used in TorchServe.

    Handler to load models in MMDetection3D, and it will process data to get
    predicted results. For now, it only supports SECOND.
    """
    threshold = 0.5
    load_dim = 4
    use_dim = [0, 1, 2, 3]
    coord_type = 'LIDAR'
    attribute_dims = None

    def initialize(self, context):
        """Initialize function loads the model in MMDetection3D.

        Args:
            context (context): It is a JSON Object containing information
                pertaining to the model artifacts parameters.
        """
        properties = context.system_properties
        self.map_location = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.device = torch.device(self.map_location + ':' +
                                   str(properties.get('gpu_id')) if torch.cuda.
                                   is_available() else self.map_location)
        self.manifest = context.manifest

        model_dir = properties.get('model_dir')
        serialized_file = self.manifest['model']['serializedFile']
        checkpoint = os.path.join(model_dir, serialized_file)
        self.config_file = os.path.join(model_dir, 'config.py')
        self.model = init_model(self.config_file, checkpoint, self.device)
        self.initialized = True

    def preprocess(self, data):
        """Preprocess function converts data into LiDARPoints class.

        Args:
            data (List): Input data from the request.

        Returns:
            `LiDARPoints` : The preprocess function returns the input
                point cloud data as LiDARPoints class.
        """
        for row in data:
            # Compat layer: normally the envelope should just return the data
            # directly, but older versions of Torchserve didn't have envelope.
            pts = row.get('data') or row.get('body')
            if isinstance(pts, str):
                pts = base64.b64decode(pts)

            points = np.frombuffer(pts, dtype=np.float32)
            points = points.reshape(-1, self.load_dim)
            points = points[:, self.use_dim]
            points_class = get_points_type(self.coord_type)
            points = points_class(
                points,
                points_dim=points.shape[-1],
                attribute_dims=self.attribute_dims)

        return points

    def inference(self, data):
        """Inference Function.

        This function is used to make a prediction call on the
        given input request.

        Args:
            data (`LiDARPoints`): LiDARPoints class passed to make
                the inference request.

        Returns:
            List(dict) : The predicted result is returned in this function.
        """
        results, _ = inference_detector(self.model, data)
        return results

    def postprocess(self, data):
        """Postprocess function.

        This function makes use of the output from the inference and
        converts it into a torchserve supported response output.

        Args:
            data (List[dict]): The data received from the prediction
                output of the model.

        Returns:
            List: The post process function returns a list of the predicted
                output.
        """
        output = []
        for pts_index, result in enumerate(data):
            output.append([])
            if 'pts_bbox' in result.keys():
108
                pred_bboxes = result['pts_bbox']['boxes_3d'].numpy()
109
110
                pred_scores = result['pts_bbox']['scores_3d'].numpy()
            else:
111
                pred_bboxes = result['boxes_3d'].numpy()
112
113
114
115
116
117
118
119
120
                pred_scores = result['scores_3d'].numpy()

            index = pred_scores > self.threshold
            bbox_coords = pred_bboxes[index].tolist()
            score = pred_scores[index].tolist()

            output[pts_index].append({'3dbbox': bbox_coords, 'score': score})

        return output