base_box3d.py 25.5 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import warnings
zhangwenwei's avatar
zhangwenwei committed
3
from abc import abstractmethod
4
from typing import Iterator, Optional, Sequence, Tuple, Union
5

6
7
import numpy as np
import torch
8
from mmcv.ops import box_iou_rotated, points_in_boxes_all, points_in_boxes_part
9
from torch import Tensor
10

11
from mmdet3d.structures.points import BasePoints
12
from .utils import limit_period
zhangwenwei's avatar
zhangwenwei committed
13

14

15
class BaseInstance3DBoxes:
zhangwenwei's avatar
zhangwenwei committed
16
    """Base class for 3D Boxes.
17

zhangwenwei's avatar
zhangwenwei committed
18
    Note:
19
20
        The box is bottom centered, i.e. the relative position of origin in the
        box is (0.5, 0.5, 0).
zhangwenwei's avatar
zhangwenwei committed
21

zhangwenwei's avatar
zhangwenwei committed
22
    Args:
23
24
25
26
27
28
29
        tensor (Tensor or np.ndarray or Sequence[Sequence[float]]): The boxes
            data with shape (N, box_dim).
        box_dim (int): Number of the dimension of a box. Each row is
            (x, y, z, x_size, y_size, z_size, yaw). Defaults to 7.
        with_yaw (bool): Whether the box is with yaw rotation. If False, the
            value of yaw will be set to 0 as minmax boxes. Defaults to True.
        origin (Tuple[float]): Relative position of the box origin.
30
            Defaults to (0.5, 0.5, 0). This will guide the box be converted to
wuyuefeng's avatar
wuyuefeng committed
31
            (0.5, 0.5, 0) mode.
Wenwei Zhang's avatar
Wenwei Zhang committed
32
33

    Attributes:
34
35
36
        tensor (Tensor): Float matrix with shape (N, box_dim).
        box_dim (int): Integer indicating the dimension of a box. Each row is
            (x, y, z, x_size, y_size, z_size, yaw, ...).
Wenwei Zhang's avatar
Wenwei Zhang committed
37
38
        with_yaw (bool): If True, the value of yaw will be set to 0 as minmax
            boxes.
39
40
    """

41
42
    YAW_AXIS: int = 0

43
44
45
46
47
48
49
50
    def __init__(
        self,
        tensor: Union[Tensor, np.ndarray, Sequence[Sequence[float]]],
        box_dim: int = 7,
        with_yaw: bool = True,
        origin: Tuple[float, float, float] = (0.5, 0.5, 0)
    ) -> None:
        if isinstance(tensor, Tensor):
51
52
53
54
55
            device = tensor.device
        else:
            device = torch.device('cpu')
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
56
57
58
59
60
61
62
            # Use reshape, so we don't end up creating a new tensor that does
            # not depend on the inputs (and consequently confuses jit)
            tensor = tensor.reshape((-1, box_dim))
        assert tensor.dim() == 2 and tensor.size(-1) == box_dim, \
            ('The box dimension must be 2 and the length of the last '
             f'dimension must be {box_dim}, but got boxes with shape '
             f'{tensor.shape}.')
wuyuefeng's avatar
wuyuefeng committed
63

wuyuefeng's avatar
wuyuefeng committed
64
        if tensor.shape[-1] == 6:
65
66
            # If the dimension of boxes is 6, we expand box_dim by padding 0 as
            # a fake yaw and set with_yaw to False
wuyuefeng's avatar
wuyuefeng committed
67
68
69
70
            assert box_dim == 6
            fake_rot = tensor.new_zeros(tensor.shape[0], 1)
            tensor = torch.cat((tensor, fake_rot), dim=-1)
            self.box_dim = box_dim + 1
wuyuefeng's avatar
wuyuefeng committed
71
            self.with_yaw = False
wuyuefeng's avatar
wuyuefeng committed
72
73
        else:
            self.box_dim = box_dim
wuyuefeng's avatar
wuyuefeng committed
74
            self.with_yaw = with_yaw
75
        self.tensor = tensor.clone()
76

wuyuefeng's avatar
wuyuefeng committed
77
78
        if origin != (0.5, 0.5, 0):
            dst = self.tensor.new_tensor((0.5, 0.5, 0))
zhangwenwei's avatar
zhangwenwei committed
79
80
81
            src = self.tensor.new_tensor(origin)
            self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)

82
83
84
85
86
    @property
    def shape(self) -> torch.Size:
        """torch.Size: Shape of boxes."""
        return self.tensor.shape

zhangwenwei's avatar
zhangwenwei committed
87
    @property
88
89
    def volume(self) -> Tensor:
        """Tensor: A vector with volume of each box in shape (N, )."""
90
91
        return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5]

zhangwenwei's avatar
zhangwenwei committed
92
    @property
93
94
    def dims(self) -> Tensor:
        """Tensor: Size dimensions of each box in shape (N, 3)."""
zhangwenwei's avatar
zhangwenwei committed
95
96
        return self.tensor[:, 3:6]

zhangwenwei's avatar
zhangwenwei committed
97
    @property
98
99
    def yaw(self) -> Tensor:
        """Tensor: A vector with yaw of each box in shape (N, )."""
zhangwenwei's avatar
zhangwenwei committed
100
101
        return self.tensor[:, 6]

102
    @property
103
104
    def height(self) -> Tensor:
        """Tensor: A vector with height of each box in shape (N, )."""
105
106
        return self.tensor[:, 5]

107
    @property
108
109
    def top_height(self) -> Tensor:
        """Tensor: A vector with top height of each box in shape (N, )."""
110
111
112
        return self.bottom_height + self.height

    @property
113
114
    def bottom_height(self) -> Tensor:
        """Tensor: A vector with bottom height of each box in shape (N, )."""
115
116
        return self.tensor[:, 2]

zhangwenwei's avatar
zhangwenwei committed
117
    @property
118
    def center(self) -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
119
120
121
        """Calculate the center of all the boxes.

        Note:
122
123
            In MMDetection3D's convention, the bottom center is usually taken
            as the default center.
zhangwenwei's avatar
zhangwenwei committed
124

125
126
127
128
129
            The relative position of the centers in different kinds of boxes
            are different, e.g., the relative center of a boxes is
            (0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar. It is
            recommended to use ``bottom_center`` or ``gravity_center`` for
            clearer usage.
zhangwenwei's avatar
zhangwenwei committed
130
131

        Returns:
132
            Tensor: A tensor with center of each box in shape (N, 3).
zhangwenwei's avatar
zhangwenwei committed
133
134
135
        """
        return self.bottom_center

zhangwenwei's avatar
zhangwenwei committed
136
    @property
137
138
    def bottom_center(self) -> Tensor:
        """Tensor: A tensor with center of each box in shape (N, 3)."""
zhangwenwei's avatar
zhangwenwei committed
139
        return self.tensor[:, :3]
140

zhangwenwei's avatar
zhangwenwei committed
141
    @property
142
143
144
145
146
147
148
    def gravity_center(self) -> Tensor:
        """Tensor: A tensor with center of each box in shape (N, 3)."""
        bottom_center = self.bottom_center
        gravity_center = torch.zeros_like(bottom_center)
        gravity_center[:, :2] = bottom_center[:, :2]
        gravity_center[:, 2] = bottom_center[:, 2] + self.tensor[:, 5] * 0.5
        return gravity_center
149

zhangwenwei's avatar
zhangwenwei committed
150
    @property
151
152
    def corners(self) -> Tensor:
        """Tensor: A tensor with 8 corners of each box in shape (N, 8, 3)."""
153
154
        pass

155
    @property
156
157
158
    def bev(self) -> Tensor:
        """Tensor: 2D BEV box of each box with rotation in XYWHR format, in
        shape (N, 5)."""
159
160
161
        return self.tensor[:, [0, 1, 3, 4, 6]]

    @property
162
163
    def nearest_bev(self) -> Tensor:
        """Tensor: A tensor of 2D BEV box of each box without rotation."""
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        # Obtain BEV boxes with rotation in XYWHR format
        bev_rotated_boxes = self.bev
        # convert the rotation to a valid range
        rotations = bev_rotated_boxes[:, -1]
        normed_rotations = torch.abs(limit_period(rotations, 0.5, np.pi))

        # find the center of boxes
        conditions = (normed_rotations > np.pi / 4)[..., None]
        bboxes_xywh = torch.where(conditions, bev_rotated_boxes[:,
                                                                [0, 1, 3, 2]],
                                  bev_rotated_boxes[:, :4])

        centers = bboxes_xywh[:, :2]
        dims = bboxes_xywh[:, 2:]
        bev_boxes = torch.cat([centers - dims / 2, centers + dims / 2], dim=-1)
        return bev_boxes

181
182
183
    def in_range_bev(
            self, box_range: Union[Tensor, np.ndarray,
                                   Sequence[float]]) -> Tensor:
184
185
186
        """Check whether the boxes are in the given range.

        Args:
187
188
            box_range (Tensor or np.ndarray or Sequence[float]): The range of
                box in order of (x_min, y_min, x_max, y_max).
189
190

        Note:
191
192
193
            The original implementation of SECOND checks whether boxes in a
            range by checking whether the points are in a convex polygon, we
            reduce the burden for simpler cases.
194
195

        Returns:
196
197
            Tensor: A binary vector indicating whether each box is inside the
            reference range.
198
199
200
201
202
203
204
        """
        in_range_flags = ((self.bev[:, 0] > box_range[0])
                          & (self.bev[:, 1] > box_range[1])
                          & (self.bev[:, 0] < box_range[2])
                          & (self.bev[:, 1] < box_range[3]))
        return in_range_flags

205
    @abstractmethod
206
207
208
209
210
211
    def rotate(
        self,
        angle: Union[Tensor, np.ndarray, float],
        points: Optional[Union[Tensor, np.ndarray, BasePoints]] = None
    ) -> Union[Tuple[Tensor, Tensor], Tuple[np.ndarray, np.ndarray], Tuple[
            BasePoints, Tensor], None]:
212
213
        """Rotate boxes with points (optional) with the given angle or rotation
        matrix.
214
215

        Args:
216
217
218
            angle (Tensor or np.ndarray or float): Rotation angle or rotation
                matrix.
            points (Tensor or np.ndarray or :obj:`BasePoints`, optional):
219
                Points to rotate. Defaults to None.
220
221
222
223
224

        Returns:
            tuple or None: When ``points`` is None, the function returns None,
            otherwise it returns the rotated points and the rotation matrix
            ``rot_mat_T``.
225
226
227
228
        """
        pass

    @abstractmethod
229
230
231
232
233
    def flip(
        self,
        bev_direction: str = 'horizontal',
        points: Optional[Union[Tensor, np.ndarray, BasePoints]] = None
    ) -> Union[Tensor, np.ndarray, BasePoints, None]:
234
235
236
        """Flip the boxes in BEV along given BEV direction.

        Args:
237
238
239
240
241
242
243
244
245
            bev_direction (str): Direction by which to flip. Can be chosen from
                'horizontal' and 'vertical'. Defaults to 'horizontal'.
            points (Tensor or np.ndarray or :obj:`BasePoints`, optional):
                Points to flip. Defaults to None.

        Returns:
            Tensor or np.ndarray or :obj:`BasePoints` or None: When ``points``
            is None, the function returns None, otherwise it returns the
            flipped points.
246
        """
247
248
        pass

249
    def translate(self, trans_vector: Union[Tensor, np.ndarray]) -> None:
250
        """Translate boxes with the given translation vector.
251
252

        Args:
253
254
            trans_vector (Tensor or np.ndarray): Translation vector of size
                1x3.
255
        """
256
        if not isinstance(trans_vector, Tensor):
zhangwenwei's avatar
zhangwenwei committed
257
258
            trans_vector = self.tensor.new_tensor(trans_vector)
        self.tensor[:, :3] += trans_vector
259

260
261
262
    def in_range_3d(
            self, box_range: Union[Tensor, np.ndarray,
                                   Sequence[float]]) -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
263
        """Check whether the boxes are in the given range.
264
265

        Args:
266
267
            box_range (Tensor or np.ndarray or Sequence[float]): The range of
                box (x_min, y_min, z_min, x_max, y_max, z_max).
268

zhangwenwei's avatar
zhangwenwei committed
269
        Note:
270
271
272
            In the original implementation of SECOND, checking whether a box in
            the range checks whether the points are in a convex polygon, we try
            to reduce the burden for simpler cases.
zhangwenwei's avatar
zhangwenwei committed
273

274
        Returns:
275
276
            Tensor: A binary vector indicating whether each point is inside the
            reference range.
277
        """
zhangwenwei's avatar
zhangwenwei committed
278
279
280
281
282
283
284
        in_range_flags = ((self.tensor[:, 0] > box_range[0])
                          & (self.tensor[:, 1] > box_range[1])
                          & (self.tensor[:, 2] > box_range[2])
                          & (self.tensor[:, 0] < box_range[3])
                          & (self.tensor[:, 1] < box_range[4])
                          & (self.tensor[:, 2] < box_range[5]))
        return in_range_flags
285

286
    @abstractmethod
287
288
289
290
    def convert_to(self,
                   dst: int,
                   rt_mat: Optional[Union[Tensor, np.ndarray]] = None,
                   correct_yaw: bool = False) -> 'BaseInstance3DBoxes':
Wenwei Zhang's avatar
Wenwei Zhang committed
291
        """Convert self to ``dst`` mode.
292
293

        Args:
294
295
            dst (int): The target Box mode.
            rt_mat (Tensor or np.ndarray, optional): The rotation and
296
                translation matrix between different coordinates.
297
298
299
300
301
302
                Defaults to None. The conversion from ``src`` coordinates to
                ``dst`` coordinates usually comes along the change of sensors,
                e.g., from camera to LiDAR. This requires a transformation
                matrix.
            correct_yaw (bool): Whether to convert the yaw angle to the target
                coordinate. Defaults to False.
303
304

        Returns:
305
306
            :obj:`BaseInstance3DBoxes`: The converted box of the same type in
            the ``dst`` mode.
307
308
309
        """
        pass

310
    def scale(self, scale_factor: float) -> None:
zhangwenwei's avatar
zhangwenwei committed
311
        """Scale the box with horizontal and vertical scaling factors.
zhangwenwei's avatar
zhangwenwei committed
312
313

        Args:
liyinhao's avatar
liyinhao committed
314
            scale_factors (float): Scale factors to scale the boxes.
zhangwenwei's avatar
zhangwenwei committed
315
        """
zhangwenwei's avatar
zhangwenwei committed
316
        self.tensor[:, :6] *= scale_factor
317
        self.tensor[:, 7:] *= scale_factor  # velocity
zhangwenwei's avatar
zhangwenwei committed
318

319
    def limit_yaw(self, offset: float = 0.5, period: float = np.pi) -> None:
zhangwenwei's avatar
zhangwenwei committed
320
        """Limit the yaw to a given period and offset.
zhangwenwei's avatar
zhangwenwei committed
321
322

        Args:
323
324
            offset (float): The offset of the yaw. Defaults to 0.5.
            period (float): The expected period. Defaults to np.pi.
zhangwenwei's avatar
zhangwenwei committed
325
326
        """
        self.tensor[:, 6] = limit_period(self.tensor[:, 6], offset, period)
zhangwenwei's avatar
zhangwenwei committed
327

328
    def nonempty(self, threshold: float = 0.0) -> Tensor:
329
330
        """Find boxes that are non-empty.

331
332
        A box is considered empty if either of its side is no larger than
        threshold.
333

zhangwenwei's avatar
zhangwenwei committed
334
        Args:
335
            threshold (float): The threshold of minimal sizes. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
336

337
        Returns:
338
339
            Tensor: A binary vector which represents whether each box is empty
            (False) or non-empty (True).
340
341
342
343
344
345
346
347
348
        """
        box = self.tensor
        size_x = box[..., 3]
        size_y = box[..., 4]
        size_z = box[..., 5]
        keep = ((size_x > threshold)
                & (size_y > threshold) & (size_z > threshold))
        return keep

349
350
351
    def __getitem__(
            self, item: Union[int, slice, np.ndarray,
                              Tensor]) -> 'BaseInstance3DBoxes':
352
        """
353
354
355
        Args:
            item (int or slice or np.ndarray or Tensor): Index of boxes.

356
357
        Note:
            The following usage are allowed:
358
359
360
361
362
363
364
365

            1. `new_boxes = boxes[3]`: Return a `Boxes` that contains only one
               box.
            2. `new_boxes = boxes[2:10]`: Return a slice of boxes.
            3. `new_boxes = boxes[vector]`: Where vector is a
               torch.BoolTensor with `length = len(boxes)`. Nonzero elements in
               the vector will be selected.

366
            Note that the returned Boxes might share storage with this Boxes,
367
            subject to PyTorch's indexing semantics.
368
369

        Returns:
370
            :obj:`BaseInstance3DBoxes`: A new object of
371
            :class:`BaseInstance3DBoxes` after indexing.
372
373
374
        """
        original_type = type(self)
        if isinstance(item, int):
wuyuefeng's avatar
wuyuefeng committed
375
376
377
378
            return original_type(
                self.tensor[item].view(1, -1),
                box_dim=self.box_dim,
                with_yaw=self.with_yaw)
379
380
381
        b = self.tensor[item]
        assert b.dim() == 2, \
            f'Indexing on Boxes with {item} failed to return a matrix!'
wuyuefeng's avatar
wuyuefeng committed
382
        return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw)
383

384
    def __len__(self) -> int:
wangtai's avatar
wangtai committed
385
        """int: Number of boxes in the current object."""
386
387
        return self.tensor.shape[0]

388
389
    def __repr__(self) -> str:
        """str: Return a string that describes the object."""
390
391
392
        return self.__class__.__name__ + '(\n    ' + str(self.tensor) + ')'

    @classmethod
393
394
    def cat(cls, boxes_list: Sequence['BaseInstance3DBoxes']
            ) -> 'BaseInstance3DBoxes':
395
        """Concatenate a list of Boxes into a single Boxes.
396

liyinhao's avatar
liyinhao committed
397
        Args:
398
            boxes_list (Sequence[:obj:`BaseInstance3DBoxes`]): List of boxes.
zhangwenwei's avatar
zhangwenwei committed
399

400
        Returns:
401
            :obj:`BaseInstance3DBoxes`: The concatenated boxes.
402
403
404
405
406
407
408
409
        """
        assert isinstance(boxes_list, (list, tuple))
        if len(boxes_list) == 0:
            return cls(torch.empty(0))
        assert all(isinstance(box, cls) for box in boxes_list)

        # use torch.cat (v.s. layers.cat)
        # so the returned boxes never share storage with input
zhangwenwei's avatar
zhangwenwei committed
410
411
        cat_boxes = cls(
            torch.cat([b.tensor for b in boxes_list], dim=0),
412
            box_dim=boxes_list[0].box_dim,
zhangwenwei's avatar
zhangwenwei committed
413
            with_yaw=boxes_list[0].with_yaw)
414
415
        return cat_boxes

416
417
418
419
    def numpy(self) -> np.ndarray:
        """Reload ``numpy`` from self.tensor."""
        return self.tensor.numpy()

420
421
    def to(self, device: Union[str, torch.device], *args,
           **kwargs) -> 'BaseInstance3DBoxes':
zhangwenwei's avatar
zhangwenwei committed
422
        """Convert current boxes to a specific device.
zhangwenwei's avatar
zhangwenwei committed
423
424

        Args:
425
            device (str or :obj:`torch.device`): The name of the device.
zhangwenwei's avatar
zhangwenwei committed
426
427

        Returns:
428
            :obj:`BaseInstance3DBoxes`: A new boxes object on the specific
429
            device.
zhangwenwei's avatar
zhangwenwei committed
430
        """
431
        original_type = type(self)
wuyuefeng's avatar
wuyuefeng committed
432
        return original_type(
JingweiZhang12's avatar
JingweiZhang12 committed
433
            self.tensor.to(device, *args, **kwargs),
wuyuefeng's avatar
wuyuefeng committed
434
435
            box_dim=self.box_dim,
            with_yaw=self.with_yaw)
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    def cpu(self) -> 'BaseInstance3DBoxes':
        """Convert current boxes to cpu device.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new boxes object on the cpu device.
        """
        original_type = type(self)
        return original_type(
            self.tensor.cpu(), box_dim=self.box_dim, with_yaw=self.with_yaw)

    def cuda(self, *args, **kwargs) -> 'BaseInstance3DBoxes':
        """Convert current boxes to cuda device.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new boxes object on the cuda device.
        """
        original_type = type(self)
        return original_type(
            self.tensor.cuda(*args, **kwargs),
            box_dim=self.box_dim,
            with_yaw=self.with_yaw)

459
460
    def clone(self) -> 'BaseInstance3DBoxes':
        """Clone the boxes.
461
462

        Returns:
463
464
            :obj:`BaseInstance3DBoxes`: Box object with the same properties as
            self.
465
466
        """
        original_type = type(self)
wuyuefeng's avatar
wuyuefeng committed
467
468
        return original_type(
            self.tensor.clone(), box_dim=self.box_dim, with_yaw=self.with_yaw)
469

470
471
472
473
474
475
476
477
478
479
480
    def detach(self) -> 'BaseInstance3DBoxes':
        """Detach the boxes.

        Returns:
            :obj:`BaseInstance3DBoxes`: Box object with the same properties as
            self.
        """
        original_type = type(self)
        return original_type(
            self.tensor.detach(), box_dim=self.box_dim, with_yaw=self.with_yaw)

481
    @property
482
483
    def device(self) -> torch.device:
        """torch.device: The device of the boxes are on."""
484
485
        return self.tensor.device

486
487
    def __iter__(self) -> Iterator[Tensor]:
        """Yield a box as a Tensor at a time.
wuyuefeng's avatar
wuyuefeng committed
488
489

        Returns:
490
            Iterator[Tensor]: A box of shape (box_dim, ).
491
492
        """
        yield from self.tensor
493
494

    @classmethod
495
496
    def height_overlaps(cls, boxes1: 'BaseInstance3DBoxes',
                        boxes2: 'BaseInstance3DBoxes') -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
497
        """Calculate height overlaps of two boxes.
498
499

        Note:
500
501
            This function calculates the height overlaps between ``boxes1`` and
            ``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
502
503

        Args:
504
505
            boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
            boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
506
507

        Returns:
508
            Tensor: Calculated height overlap of the boxes.
509
        """
510
511
        assert isinstance(boxes1, BaseInstance3DBoxes)
        assert isinstance(boxes2, BaseInstance3DBoxes)
512
513
514
        assert type(boxes1) == type(boxes2), \
            '"boxes1" and "boxes2" should be in the same type, ' \
            f'but got {type(boxes1)} and {type(boxes2)}.'
515
516
517
518
519
520
521
522
523
524
525
526
527

        boxes1_top_height = boxes1.top_height.view(-1, 1)
        boxes1_bottom_height = boxes1.bottom_height.view(-1, 1)
        boxes2_top_height = boxes2.top_height.view(1, -1)
        boxes2_bottom_height = boxes2.bottom_height.view(1, -1)

        heighest_of_bottom = torch.max(boxes1_bottom_height,
                                       boxes2_bottom_height)
        lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height)
        overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0)
        return overlaps_h

    @classmethod
528
529
530
531
    def overlaps(cls,
                 boxes1: 'BaseInstance3DBoxes',
                 boxes2: 'BaseInstance3DBoxes',
                 mode: str = 'iou') -> Tensor:
zhangwenwei's avatar
zhangwenwei committed
532
        """Calculate 3D overlaps of two boxes.
533
534

        Note:
Wenwei Zhang's avatar
Wenwei Zhang committed
535
536
            This function calculates the overlaps between ``boxes1`` and
            ``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
537
538

        Args:
539
540
            boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
            boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
541
            mode (str): Mode of iou calculation. Defaults to 'iou'.
542
543

        Returns:
544
            Tensor: Calculated 3D overlap of the boxes.
545
546
547
        """
        assert isinstance(boxes1, BaseInstance3DBoxes)
        assert isinstance(boxes2, BaseInstance3DBoxes)
548
549
550
        assert type(boxes1) == type(boxes2), \
            '"boxes1" and "boxes2" should be in the same type, ' \
            f'but got {type(boxes1)} and {type(boxes2)}.'
551
552
553

        assert mode in ['iou', 'iof']

zhangwenwei's avatar
zhangwenwei committed
554
555
556
557
558
        rows = len(boxes1)
        cols = len(boxes2)
        if rows * cols == 0:
            return boxes1.tensor.new(rows, cols)

559
560
561
        # height overlap
        overlaps_h = cls.height_overlaps(boxes1, boxes2)

562
563
564
565
        # Restrict the min values of W and H to avoid memory overflow in
        # ``box_iou_rotated``.
        boxes1_bev, boxes2_bev = boxes1.bev, boxes2.bev
        boxes1_bev[:, 2:4] = boxes1_bev[:, 2:4].clamp(min=1e-4)
566
        boxes2_bev[:, 2:4] = boxes2_bev[:, 2:4].clamp(min=1e-4)
567

568
        # bev overlap
569
570
        iou2d = box_iou_rotated(boxes1_bev, boxes2_bev)
        areas1 = (boxes1_bev[:, 2] * boxes1_bev[:, 3]).unsqueeze(1).expand(
571
            rows, cols)
572
        areas2 = (boxes2_bev[:, 2] * boxes2_bev[:, 3]).unsqueeze(0).expand(
573
574
            rows, cols)
        overlaps_bev = iou2d * (areas1 + areas2) / (1 + iou2d)
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589

        # 3d overlaps
        overlaps_3d = overlaps_bev.to(boxes1.device) * overlaps_h

        volume1 = boxes1.volume.view(-1, 1)
        volume2 = boxes2.volume.view(1, -1)

        if mode == 'iou':
            # the clamp func is used to avoid division of 0
            iou3d = overlaps_3d / torch.clamp(
                volume1 + volume2 - overlaps_3d, min=1e-8)
        else:
            iou3d = overlaps_3d / torch.clamp(volume1, min=1e-8)

        return iou3d
wuyuefeng's avatar
wuyuefeng committed
590

591
592
593
    def new_box(
        self, data: Union[Tensor, np.ndarray, Sequence[Sequence[float]]]
    ) -> 'BaseInstance3DBoxes':
wuyuefeng's avatar
wuyuefeng committed
594
595
        """Create a new box object with data.

596
597
        The new box and its tensor has the similar properties as self and
        self.tensor, respectively.
wuyuefeng's avatar
wuyuefeng committed
598
599

        Args:
600
601
            data (Tensor or np.ndarray or Sequence[Sequence[float]]): Data to
                be copied.
wuyuefeng's avatar
wuyuefeng committed
602
603

        Returns:
604
605
            :obj:`BaseInstance3DBoxes`: A new bbox object with ``data``, the
            object's other properties are similar to ``self``.
wuyuefeng's avatar
wuyuefeng committed
606
        """
zhangwenwei's avatar
zhangwenwei committed
607
        new_tensor = self.tensor.new_tensor(data) \
608
            if not isinstance(data, Tensor) else data.to(self.device)
wuyuefeng's avatar
wuyuefeng committed
609
610
611
        original_type = type(self)
        return original_type(
            new_tensor, box_dim=self.box_dim, with_yaw=self.with_yaw)
612

613
614
615
616
    def points_in_boxes_part(
            self,
            points: Tensor,
            boxes_override: Optional[Tensor] = None) -> Tensor:
617
        """Find the box in which each point is.
618
619

        Args:
620
621
622
623
            points (Tensor): Points in shape (1, M, 3) or (M, 3), 3 dimensions
                are (x, y, z) in LiDAR or depth coordinate.
            boxes_override (Tensor, optional): Boxes to override `self.tensor`.
                Defaults to None.
624
625

        Note:
626
627
628
629
630
631
632
            If a point is enclosed by multiple boxes, the index of the first
            box will be returned.

        Returns:
            Tensor: The index of the first box that each point is in with shape
            (M, ). Default value is -1 (if the point is not enclosed by any
            box).
633
634
635
636
637
        """
        if boxes_override is not None:
            boxes = boxes_override
        else:
            boxes = self.tensor
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

        points_clone = points.clone()[..., :3]
        if points_clone.dim() == 2:
            points_clone = points_clone.unsqueeze(0)
        else:
            assert points_clone.dim() == 3 and points_clone.shape[0] == 1

        boxes = boxes.to(points_clone.device).unsqueeze(0)
        box_idx = points_in_boxes_part(points_clone, boxes)

        return box_idx.squeeze(0)

    def points_in_boxes_all(self,
                            points: Tensor,
                            boxes_override: Optional[Tensor] = None) -> Tensor:
653
        """Find all boxes in which each point is.
654
655

        Args:
656
657
658
659
            points (Tensor): Points in shape (1, M, 3) or (M, 3), 3 dimensions
                are (x, y, z) in LiDAR or depth coordinate.
            boxes_override (Tensor, optional): Boxes to override `self.tensor`.
                Defaults to None.
660
661

        Returns:
662
663
664
665
            Tensor: A tensor indicating whether a point is in a box with shape
            (M, T). T is the number of boxes. Denote this tensor as A, it the
            m^th point is in the t^th box, then `A[m, t] == 1`, otherwise
            `A[m, t] == 0`.
666
667
668
669
670
671
672
673
674
675
676
677
678
        """
        if boxes_override is not None:
            boxes = boxes_override
        else:
            boxes = self.tensor

        points_clone = points.clone()[..., :3]
        if points_clone.dim() == 2:
            points_clone = points_clone.unsqueeze(0)
        else:
            assert points_clone.dim() == 3 and points_clone.shape[0] == 1

        boxes = boxes.to(points_clone.device).unsqueeze(0)
679
        box_idxs_of_pts = points_in_boxes_all(points_clone, boxes)
680
681

        return box_idxs_of_pts.squeeze(0)
682

683
684
685
686
687
    def points_in_boxes(self,
                        points: Tensor,
                        boxes_override: Optional[Tensor] = None) -> Tensor:
        warnings.warn('DeprecationWarning: points_in_boxes is a deprecated '
                      'method, please consider using points_in_boxes_part.')
688
689
        return self.points_in_boxes_part(points, boxes_override)

690
691
692
693
    def points_in_boxes_batch(
            self,
            points: Tensor,
            boxes_override: Optional[Tensor] = None) -> Tensor:
694
695
696
697
        warnings.warn('DeprecationWarning: points_in_boxes_batch is a '
                      'deprecated method, please consider using '
                      'points_in_boxes_all.')
        return self.points_in_boxes_all(points, boxes_override)