scannet_det.md 12.9 KB
Newer Older
hjin2902's avatar
hjin2902 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# ScanNet for 3D Object Detection

## Dataset preparation

For the overall process, please refer to the [README](https://github.com/open-mmlab/mmdetection3d/blob/master/data/scannet/README.md/) page for ScanNet.

### Export ScanNet data

By exporting ScanNet data, we load the raw point cloud data and generate the relevant annotations including semantic label, instance label and ground truth bounding boxes.

```shell
python batch_load_scannet_data.py
```

The directory structure before data preparation should be as below

```
mmdetection3d
├── mmdet3d
├── tools
├── configs
├── data
│   ├── scannet
│   │   ├── meta_data
│   │   ├── scans
│   │   │   ├── scenexxxx_xx
│   │   ├── batch_load_scannet_data.py
│   │   ├── load_scannet_data.py
│   │   ├── scannet_utils.py
│   │   ├── README.md
```

Under folder `scans` there are overall 1201 train and 312 validation folders in which raw point cloud data and relevant annotations are saved. For instance, under folder `scene0001_01` the files are as below:

- `scene0001_01_vh_clean_2.ply`: Mesh file including raw point cloud data.
- `scene0001_01.aggregation.json`: Aggregation file including object id, segments id and label.
- `scene0001_01_vh_clean_2.0.010000.segs.json`: Segmentation file including segments id and vertex.
- `scene0001_01.txt`: Meta file including axis-aligned matrix, etc.
- `scene0001_01_vh_clean_2.labels.ply`

Export ScanNet data by running `python batch_load_scannet_data.py`. The main steps include:

- Export original files to point cloud, instance label, semantic label and bounding box file.
- Downsample raw point cloud and filter invalid classes.
- Save point cloud data and relevant annotation files.

 And the core function `export` in `load_scannet_data.py` is as follows:

```python
def export(mesh_file,
           agg_file,
           seg_file,
           meta_file,
           label_map_file,
           output_file=None,
           test_mode=False):

    # label map file: ./data/scannet/meta_data/scannetv2-labels.combined.tsv
    # the various label standards in the label map file, e.g. 'nyu40id'
    label_map = scannet_utils.read_label_mapping(
        label_map_file, label_from='raw_category', label_to='nyu40id')
    # load raw point cloud data, 6-dims feature: XYZRGB
    mesh_vertices = scannet_utils.read_mesh_vertices_rgb(mesh_file)

    # Load scene axis alignment matrix: a 4x4 transformation matrix
    # transform raw points in sensor coordinate system to a coordinate system
    # which is axis-aligned with the length/width of the room
    lines = open(meta_file).readlines()
    # test set data doesn't have align_matrix
    axis_align_matrix = np.eye(4)
    for line in lines:
        if 'axisAlignment' in line:
            axis_align_matrix = [
                float(x)
                for x in line.rstrip().strip('axisAlignment = ').split(' ')
            ]
            break
    axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))

    # perform global alignment of mesh vertices
    pts = np.ones((mesh_vertices.shape[0], 4))
    # raw point cloud in homogeneous coordinats, each row: [x, y, z, 1]
    pts[:, 0:3] = mesh_vertices[:, 0:3]
    # transform raw mesh vertices to aligned mesh vertices
    pts = np.dot(pts, axis_align_matrix.transpose())  # Nx4
    aligned_mesh_vertices = np.concatenate([pts[:, 0:3], mesh_vertices[:, 3:]],
                                           axis=1)

    # Load semantic and instance labels
    if not test_mode:
        # each object has one semantic label and consists of several segments
        object_id_to_segs, label_to_segs = read_aggregation(agg_file)
        # many points may belong to the same segment
        seg_to_verts, num_verts = read_segmentation(seg_file)
        label_ids = np.zeros(shape=(num_verts), dtype=np.uint32)
        object_id_to_label_id = {}
        for label, segs in label_to_segs.items():
            label_id = label_map[label]
            for seg in segs:
                verts = seg_to_verts[seg]
                # each point has one semantic label
                label_ids[verts] = label_id
        instance_ids = np.zeros(
            shape=(num_verts), dtype=np.uint32)  # 0: unannotated
        for object_id, segs in object_id_to_segs.items():
            for seg in segs:
                verts = seg_to_verts[seg]
                # object_id is 1-indexed, i.e. 1,2,3,.,,,.NUM_INSTANCES
                # each point belongs to one object
                instance_ids[verts] = object_id
                if object_id not in object_id_to_label_id:
                    object_id_to_label_id[object_id] = label_ids[verts][0]
        # bbox format is [x, y, z, dx, dy, dz, label_id]
        # [x, y, z] is gravity center of bbox, [dx, dy, dz] is axis-aligned
        # [label_id] is semantic label id in 'nyu40id' standard
        # Note: since 3d bbox is axis-aligned, the yaw is 0.
        unaligned_bboxes = extract_bbox(mesh_vertices, object_id_to_segs,
                                        object_id_to_label_id, instance_ids)
        aligned_bboxes = extract_bbox(aligned_mesh_vertices, object_id_to_segs,
                                      object_id_to_label_id, instance_ids)
    ...

    return mesh_vertices, label_ids, instance_ids, unaligned_bboxes, \
        aligned_bboxes, object_id_to_label_id, axis_align_matrix

```

After exporting each scan, the raw point cloud could be downsampled, e.g. to 50000, if the number of points is too large. In addition, invalid semantic labels outside of `nyu40id` standard or optional `DONOT CARE` classes should be filtered. Finally, the point cloud data, semantic labels, instance labels and ground truth bounding boxes should be saved in `.npy` files.

### Create dataset

```shell
python tools/create_data.py scannet --root-path ./data/scannet \
--out-dir ./data/scannet --extra-tag scannet
```

The above exported point cloud file, semantic label file and instance label file are further saved in `.bin` format. Meanwhile `.pkl` info files are also generated for train or validation. The core function `process_single_scene` of getting data infos is as follows.

```python
def process_single_scene(sample_idx):

    # save point cloud, instance label and semantic label in .bin file respectively, get info['pts_path'], info['pts_instance_mask_path'] and info['pts_semantic_mask_path']
    ...

    # get annotations
    if has_label:
        annotations = {}
        # box is of shape [k, 6 + class]
        aligned_box_label = self.get_aligned_box_label(sample_idx)
        unaligned_box_label = self.get_unaligned_box_label(sample_idx)
        annotations['gt_num'] = aligned_box_label.shape[0]
        if annotations['gt_num'] != 0:
            aligned_box = aligned_box_label[:, :-1]  # k, 6
            unaligned_box = unaligned_box_label[:, :-1]
            classes = aligned_box_label[:, -1]  # k
            annotations['name'] = np.array([
                self.label2cat[self.cat_ids2class[classes[i]]]
                for i in range(annotations['gt_num'])
            ])
            # default names are given to aligned bbox for compatibility
            # we also save unaligned bbox info with marked names
            annotations['location'] = aligned_box[:, :3]
            annotations['dimensions'] = aligned_box[:, 3:6]
            annotations['gt_boxes_upright_depth'] = aligned_box
            annotations['unaligned_location'] = unaligned_box[:, :3]
            annotations['unaligned_dimensions'] = unaligned_box[:, 3:6]
            annotations[
                'unaligned_gt_boxes_upright_depth'] = unaligned_box
            annotations['index'] = np.arange(
                annotations['gt_num'], dtype=np.int32)
            annotations['class'] = np.array([
                self.cat_ids2class[classes[i]]
                for i in range(annotations['gt_num'])
            ])
        axis_align_matrix = self.get_axis_align_matrix(sample_idx)
        annotations['axis_align_matrix'] = axis_align_matrix  # 4x4
        info['annos'] = annotations
    return info
```

The directory structure after process should be as below

```
scannet
├── scannet_utils.py
├── batch_load_scannet_data.py
├── load_scannet_data.py
├── scannet_utils.py
├── README.md
├── scans
├── scans_test
├── scannet_instance_data
├── points
│   ├── xxxxx.bin
├── instance_mask
│   ├── xxxxx.bin
├── semantic_mask
│   ├── xxxxx.bin
├── seg_info
│   ├── train_label_weight.npy
│   ├── train_resampled_scene_idxs.npy
│   ├── val_label_weight.npy
│   ├── val_resampled_scene_idxs.npy
├── scannet_infos_train.pkl
├── scannet_infos_val.pkl
├── scannet_infos_test.pkl
```

- `points/xxxxx.bin`: The `axis-unaligned` point cloud data after downsample. Note: the point would be axis-aligned in pre-processing `GlobalAlignment` of 3d detection task.
- `instance_mask/xxxxx.bin`: The instance label for each point, value range: [0, NUM_INSTANCES], 0: unannotated.
- `semantic_mask/xxxxx.bin`: The semantic label for each point, value range: [1, 40], i.e. `nyu40id` standard. Note: the `nyu40id` id will be mapped to train id in train pipeline `PointSegClassMapping`.
- `scannet_infos_train.pkl`: The train data infos, the detailed info of each scan is as follows:
    - info['point_cloud']: {'num_features': 6, 'lidar_idx': sample_idx}.
    - info['pts_path']: The path of `points/xxxxx.bin`.
    - info['pts_instance_mask_path']: The path of `instance_mask/xxxxx.bin`.
    - info['pts_semantic_mask_path']: The path of `semantic_mask/xxxxx.bin`.
    - info['annos']: The annotations of each scan.
        - annotations['gt_num']: The number of ground truth.
        - annotations['name']: The semantic name of all ground truths, e.g. `chair`.
        - annotations['location']: The gravity center of axis-aligned 3d bounding box. Shape: [K, 3], K is the number of ground truth.
        - annotations['dimensions']: The dimensions of axis-aligned 3d bounding box, i.e. x_size, y_size, z_size, shape: [K, 3].
        - annotations['gt_boxes_upright_depth']: Axis-aligned 3d bounding box, each bounding box is x, y, z, x_size, y_size, z_size, shape: [K, 6].
        - annotations['unaligned_location']: The gravity center of axis-unaligned 3d bounding box.
        - annotations['unaligned_dimensions']: The dimensions of axis-unaligned 3d bounding box.
        - annotations['unaligned_gt_boxes_upright_depth']: Axis-unaligned 3d bounding box.
        - annotations['index']: The index of all ground truths, i.e. [0, K).
        - annotations['class']: The train class id of each bounding box, value range: [0, 18), shape: [K, ].


## Train pipeline

A typical train pipeline of ScanNet for 3d detection is as below.

```python
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        with_mask_3d=True,
        with_seg_3d=True),
    dict(type='GlobalAlignment', rotation_axis=2),
    dict(
        type='PointSegClassMapping',
        valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
                       36, 39),
        max_cat_id=40),
    dict(type='IndoorPointSample', num_points=40000),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.087266, 0.087266],
        scale_ratio_range=[1.0, 1.0],
        shift_height=True),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(
        type='Collect3D',
        keys=[
            'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
            'pts_instance_mask'
        ])
]
```
- `GlobalAlignment`: The previous point cloud would be axis-aligned using the axis-aligned matrix.
- `PointSegClassMapping`: Only the valid category id will be mapped to train class label id like [0, 18).
- Data augmentation:
    - `IndoorPointSample`: downsample input point cloud.
    - `RandomFlip3D`: randomly flip input point cloud horizontally or vertically.
    - `GlobalRotScaleTrans`: rotate input point cloud, usually [-5, 5] degree.

## Metrics

Typically mean average precision (mAP) is used for evaluation on ScanNet, e.g. `mAP@0.25` and `mAP@0.5`. In detail, a generic functions to compute precision and recall for 3d object detection for multiple classes is called, please refer to [indoor_eval](https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/core/evaluation/indoor_eval.py).
As introduced in section `Export ScanNet data`, all ground truth 3d bounding box are axis-aligned, i.e. the yaw is zero. So the yaw target of network predicted 3d bounding box is also zero and axis-aligned 3d non-maximum suppression (NMS) is adopted during post-processing without reagrd to rotation.