imvoxelnet.py 10.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
Tai-Wang's avatar
Tai-Wang committed
2
3
from typing import List, Tuple, Union

4
import torch
5
from mmengine.structures import InstanceData
6

7
from mmdet3d.models.detectors import Base3DDetector
zhangshilong's avatar
zhangshilong committed
8
9
10
from mmdet3d.models.layers.fusion_layers.point_fusion import point_sample
from mmdet3d.registry import MODELS, TASK_UTILS
from mmdet3d.structures.det3d_data_sample import SampleList
11
12
13
from mmdet3d.utils import ConfigType, OptConfigType, OptInstanceList
from mmdet.models.detectors import BaseDetector

14
15


16
@MODELS.register_module()
17
class ImVoxelNet(Base3DDetector):
Tai-Wang's avatar
Tai-Wang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    r"""`ImVoxelNet <https://arxiv.org/abs/2106.01178>`_.

    Args:
        backbone (:obj:`ConfigDict` or dict): The backbone config.
        neck (:obj:`ConfigDict` or dict): The neck config.
        neck_3d (:obj:`ConfigDict` or dict): The 3D neck config.
        bbox_head (:obj:`ConfigDict` or dict): The bbox head config.
        n_voxels (list): Number of voxels along x, y, z axis.
        anchor_generator (:obj:`ConfigDict` or dict): The anchor generator
            config.
        train_cfg (:obj:`ConfigDict` or dict, optional): Config dict of
            training hyper-parameters. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, optional): Config dict of test
            hyper-parameters. Defaults to None.
        data_preprocessor (dict or ConfigDict, optional): The pre-process
            config of :class:`BaseDataPreprocessor`.  it usually includes,
                ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``.
        init_cfg (:obj:`ConfigDict` or dict, optional): The initialization
            config. Defaults to None.
    """
38
39

    def __init__(self,
Tai-Wang's avatar
Tai-Wang committed
40
41
42
43
44
45
46
47
48
49
50
51
                 backbone: ConfigType,
                 neck: ConfigType,
                 neck_3d: ConfigType,
                 bbox_head: ConfigType,
                 n_voxels: List,
                 anchor_generator: ConfigType,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 data_preprocessor: OptConfigType = None,
                 init_cfg: OptConfigType = None):
        super().__init__(
            data_preprocessor=data_preprocessor, init_cfg=init_cfg)
52
53
54
        self.backbone = MODELS.build(backbone)
        self.neck = MODELS.build(neck)
        self.neck_3d = MODELS.build(neck_3d)
55
56
        bbox_head.update(train_cfg=train_cfg)
        bbox_head.update(test_cfg=test_cfg)
57
        self.bbox_head = MODELS.build(bbox_head)
58
        self.n_voxels = n_voxels
zhangshilong's avatar
zhangshilong committed
59
        self.anchor_generator = TASK_UTILS.build(anchor_generator)
60
61
62
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

Tai-Wang's avatar
Tai-Wang committed
63
64
    def extract_feat(self, batch_inputs_dict: dict,
                     batch_data_samples: SampleList):
65
66
67
        """Extract 3d features from the backbone -> fpn -> 3d projection.

        Args:
Tai-Wang's avatar
Tai-Wang committed
68
69
70
71
72
73
74
            batch_inputs_dict (dict): The model input dict which include
                the 'imgs' key.

                    - imgs (torch.Tensor, optional): Image of each sample.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
75
76
77
78

        Returns:
            torch.Tensor: of shape (N, C_out, N_x, N_y, N_z)
        """
Tai-Wang's avatar
Tai-Wang committed
79
80
81
82
        img = batch_inputs_dict['imgs']
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]
83
84
85
86
87
        x = self.backbone(img)
        x = self.neck(x)[0]
        points = self.anchor_generator.grid_anchors(
            [self.n_voxels[::-1]], device=img.device)[0][:, :3]
        volumes = []
Tai-Wang's avatar
Tai-Wang committed
88
        for feature, img_meta in zip(x, batch_img_metas):
89
90
91
92
93
94
95
            img_scale_factor = (
                points.new_tensor(img_meta['scale_factor'][:2])
                if 'scale_factor' in img_meta.keys() else 1)
            img_flip = img_meta['flip'] if 'flip' in img_meta.keys() else False
            img_crop_offset = (
                points.new_tensor(img_meta['img_crop_offset'])
                if 'img_crop_offset' in img_meta.keys() else 0)
Tai-Wang's avatar
Tai-Wang committed
96
            lidar2img = points.new_tensor(img_meta['lidar2img'])
97
98
99
100
            volume = point_sample(
                img_meta,
                img_features=feature[None, ...],
                points=points,
Tai-Wang's avatar
Tai-Wang committed
101
                proj_mat=lidar2img,
102
                coord_type='LIDAR',
103
104
105
106
107
108
109
110
111
112
113
114
                img_scale_factor=img_scale_factor,
                img_crop_offset=img_crop_offset,
                img_flip=img_flip,
                img_pad_shape=img.shape[-2:],
                img_shape=img_meta['img_shape'][:2],
                aligned=False)
            volumes.append(
                volume.reshape(self.n_voxels[::-1] + [-1]).permute(3, 2, 1, 0))
        x = torch.stack(volumes)
        x = self.neck_3d(x)
        return x

Tai-Wang's avatar
Tai-Wang committed
115
116
117
    def loss(self, batch_inputs_dict: dict, batch_data_samples: SampleList,
             **kwargs) -> Union[dict, list]:
        """Calculate losses from a batch of inputs and data samples.
118
119

        Args:
Tai-Wang's avatar
Tai-Wang committed
120
121
122
123
124
125
126
            batch_inputs_dict (dict): The model input dict which include
                the 'imgs' key.

                    - imgs (torch.Tensor, optional): Image of each sample.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
127
128

        Returns:
Tai-Wang's avatar
Tai-Wang committed
129
            dict: A dictionary of loss components.
130
        """
Tai-Wang's avatar
Tai-Wang committed
131
132
133

        x = self.extract_feat(batch_inputs_dict, batch_data_samples)
        losses = self.bbox_head.loss(x, batch_data_samples, **kwargs)
134
135
        return losses

Tai-Wang's avatar
Tai-Wang committed
136
137
138
139
    def predict(self, batch_inputs_dict: dict, batch_data_samples: SampleList,
                **kwargs) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.
140
141

        Args:
Tai-Wang's avatar
Tai-Wang committed
142
143
            batch_inputs_dict (dict): The model input dict which include
                the 'imgs' key.
144

Tai-Wang's avatar
Tai-Wang committed
145
                    - imgs (torch.Tensor, optional): Image of each sample.
146

Tai-Wang's avatar
Tai-Wang committed
147
148
149
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`, `gt_panoptic_seg_3d` and `gt_sem_seg_3d`.
150
151

        Returns:
Tai-Wang's avatar
Tai-Wang committed
152
153
154
155
156
157
158
159
160
161
162
            list[:obj:`Det3DDataSample`]: Detection results of the
            input images. Each Det3DDataSample usually contain
            'pred_instances_3d'. And the ``pred_instances_3d`` usually
            contains following keys.

                - scores_3d (Tensor): Classification scores, has a shape
                    (num_instance, )
                - labels_3d (Tensor): Labels of bboxes, has a shape
                    (num_instances, ).
                - bboxes_3d (Tensor): Contains a tensor with shape
                    (num_instances, C) where C >=7.
163
        """
Tai-Wang's avatar
Tai-Wang committed
164
165
        x = self.extract_feat(batch_inputs_dict, batch_data_samples)
        results_list = self.bbox_head.predict(x, batch_data_samples, **kwargs)
166
167
        predictions = self.add_pred_to_datasample(batch_data_samples,
                                                  results_list)
Tai-Wang's avatar
Tai-Wang committed
168
        return predictions
169

Tai-Wang's avatar
Tai-Wang committed
170
171
172
173
    def _forward(self, batch_inputs_dict: dict, batch_data_samples: SampleList,
                 *args, **kwargs) -> Tuple[List[torch.Tensor]]:
        """Network forward process. Usually includes backbone, neck and head
        forward without any post-processing.
174
175

        Args:
Tai-Wang's avatar
Tai-Wang committed
176
177
178
179
180
181
182
            batch_inputs_dict (dict): The model input dict which include
                the 'imgs' key.

                    - imgs (torch.Tensor, optional): Image of each sample.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`, `gt_panoptic_seg_3d` and `gt_sem_seg_3d`.
183
184

        Returns:
Tai-Wang's avatar
Tai-Wang committed
185
            tuple[list]: A tuple of features from ``bbox_head`` forward.
186
        """
Tai-Wang's avatar
Tai-Wang committed
187
188
189
        x = self.extract_feat(batch_inputs_dict, batch_data_samples)
        results = self.bbox_head.forward(x)
        return results
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

    def convert_to_datasample(
        self,
        data_samples: SampleList,
        data_instances_3d: OptInstanceList = None,
        data_instances_2d: OptInstanceList = None,
    ) -> SampleList:
        """Convert results list to `Det3DDataSample`.

        Subclasses could override it to be compatible for some multi-modality
        3D detectors.

        Args:
            data_samples (list[:obj:`Det3DDataSample`]): The input data.
            data_instances_3d (list[:obj:`InstanceData`], optional): 3D
                Detection results of each sample.
            data_instances_2d (list[:obj:`InstanceData`], optional): 2D
                Detection results of each sample.

        Returns:
            list[:obj:`Det3DDataSample`]: Detection results of the
            input. Each Det3DDataSample usually contains
            'pred_instances_3d'. And the ``pred_instances_3d`` normally
            contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels_3d (Tensor): Labels of 3D bboxes, has a shape
              (num_instances, ).
            - bboxes_3d (Tensor): Contains a tensor with shape
              (num_instances, C) where C >=7.

            When there are image prediction in some models, it should
            contains  `pred_instances`, And the ``pred_instances`` normally
            contains following keys.

            - scores (Tensor): Classification scores of image, has a shape
              (num_instance, )
            - labels (Tensor): Predict Labels of 2D bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Contains a tensor with shape
              (num_instances, 4).
        """

        assert (data_instances_2d is not None) or \
               (data_instances_3d is not None),\
               'please pass at least one type of data_samples'

        if data_instances_2d is None:
            data_instances_2d = [
                InstanceData() for _ in range(len(data_instances_3d))
            ]
        if data_instances_3d is None:
            data_instances_3d = [
                InstanceData() for _ in range(len(data_instances_2d))
            ]

        for i, data_sample in enumerate(data_samples):
            data_sample.pred_instances_3d = data_instances_3d[i]
            data_sample.pred_instances = data_instances_2d[i]
        return data_samples