loading.py 17.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import mmcv
import numpy as np

4
from mmdet.datasets.builder import PIPELINES
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet.datasets.pipelines import LoadAnnotations
zhangwenwei's avatar
zhangwenwei committed
6
7


8
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
9
class LoadMultiViewImageFromFiles(object):
zhangwenwei's avatar
zhangwenwei committed
10
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
11

liyinhao's avatar
liyinhao committed
12
13
14
15
16
17
    Expects results['img_filename'] to be a list of filenames.

    Args:
        to_float32 (bool): Whether to convert the img to float32.
            Defaults to False.
        color_type (str): Color type of the file. Defaults to 'unchanged'.
zhangwenwei's avatar
zhangwenwei committed
18
    """
zhangwenwei's avatar
zhangwenwei committed
19

zhangwenwei's avatar
zhangwenwei committed
20
21
22
    def __init__(self, to_float32=False, color_type='unchanged'):
        self.to_float32 = to_float32
        self.color_type = color_type
zhangwenwei's avatar
zhangwenwei committed
23
24

    def __call__(self, results):
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        """Call function to load multi-view image from files.

        Args:
            results (dict): Result dict containing multi-view image filenames.

        Returns:
            dict: The result dict containing the multi-view image data. \
                Added keys and values are described below.

                - filename (str): Multi-view image filenames.
                - img (np.ndarray): Multi-view image arrays.
                - img_shape (tuple[int]): Shape of multi-view image arrays.
                - ori_shape (tuple[int]): Shape of original image arrays.
                - pad_shape (tuple[int]): Shape of padded image arrays.
                - scale_factor (float): Scale factor.
                - img_norm_cfg (dict): Normalization configuration of images.
        """
zhangwenwei's avatar
zhangwenwei committed
42
        filename = results['img_filename']
zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        img = np.stack(
            [mmcv.imread(name, self.color_type) for name in filename], axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)
        results['filename'] = filename
        results['img'] = img
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
zhangwenwei's avatar
zhangwenwei committed
59
60
61
        return results

    def __repr__(self):
62
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
63
64
        return "{} (to_float32={}, color_type='{}')".format(
            self.__class__.__name__, self.to_float32, self.color_type)
zhangwenwei's avatar
zhangwenwei committed
65
66
67
68


@PIPELINES.register_module()
class LoadPointsFromMultiSweeps(object):
zhangwenwei's avatar
zhangwenwei committed
69
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
70

zhangwenwei's avatar
zhangwenwei committed
71
72
73
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
liyinhao's avatar
liyinhao committed
74
75
        sweeps_num (int): number of sweeps. Defaults to 10.
        load_dim (int): dimension number of the loaded points. Defaults to 5.
zhangwenwei's avatar
zhangwenwei committed
76
77
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
78
            for more details. Defaults to dict(backend='disk').
zhangwenwei's avatar
zhangwenwei committed
79
80
81
82
83
84
85
    """

    def __init__(self,
                 sweeps_num=10,
                 load_dim=5,
                 file_client_args=dict(backend='disk')):
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
86
        self.sweeps_num = sweeps_num
zhangwenwei's avatar
zhangwenwei committed
87
88
89
90
        self.file_client_args = file_client_args.copy()
        self.file_client = None

    def _load_points(self, pts_filename):
91
92
93
94
95
96
97
98
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
zhangwenwei's avatar
zhangwenwei committed
99
100
101
102
103
104
105
106
107
108
109
110
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
111
112

    def __call__(self, results):
113
114
115
116
117
118
119
120
121
122
123
124
        """Call function to load multi-sweep point clouds from files.

        Args:
            results (dict): Result dict containing multi-sweep point cloud \
                filenames.

        Returns:
            dict: The result dict containing the multi-sweep points data. \
                Added key and value are described below.

                - points (np.ndarray): Multi-sweep point cloud arrays.
        """
zhangwenwei's avatar
zhangwenwei committed
125
126
127
128
129
130
131
132
133
        points = results['points']
        points[:, 3] /= 255
        points[:, 4] = 0
        sweep_points_list = [points]
        ts = results['timestamp']

        for idx, sweep in enumerate(results['sweeps']):
            if idx >= self.sweeps_num:
                break
zhangwenwei's avatar
zhangwenwei committed
134
135
            points_sweep = self._load_points(sweep['data_path'])
            points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
zhangwenwei's avatar
zhangwenwei committed
136
137
138
139
140
141
142
143
144
145
146
147
148
            sweep_ts = sweep['timestamp'] / 1e6
            points_sweep[:, 3] /= 255
            points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
                'sensor2lidar_rotation'].T
            points_sweep[:, :3] += sweep['sensor2lidar_translation']
            points_sweep[:, 4] = ts - sweep_ts
            sweep_points_list.append(points_sweep)

        points = np.concatenate(sweep_points_list, axis=0)[:, [0, 1, 2, 4]]
        results['points'] = points
        return results

    def __repr__(self):
149
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
150
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
151
152
153
154
155
156
157
158
159
160


@PIPELINES.register_module()
class PointSegClassMapping(object):
    """Map original semantic class to valid category ids.

    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).

    Args:
161
        valid_cat_ids (tuple[int]): A tuple of valid category.
wuyuefeng's avatar
wuyuefeng committed
162
163
164
165
166
167
    """

    def __init__(self, valid_cat_ids):
        self.valid_cat_ids = valid_cat_ids

    def __call__(self, results):
168
169
170
171
172
173
174
175
176
177
178
        """Call function to map original semantic class to valid category ids.

        Args:
            results (dict): Result dict containing point semantic masks.

        Returns:
            dict: The result dict containing the mapped category ids. \
                Updated key and value are described below.

                - pts_semantic_mask (np.ndarray): Mapped semantic masks.
        """
wuyuefeng's avatar
wuyuefeng committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']
        neg_cls = len(self.valid_cat_ids)

        for i in range(pts_semantic_mask.shape[0]):
            if pts_semantic_mask[i] in self.valid_cat_ids:
                converted_id = self.valid_cat_ids.index(pts_semantic_mask[i])
                pts_semantic_mask[i] = converted_id
            else:
                pts_semantic_mask[i] = neg_cls

        results['pts_semantic_mask'] = pts_semantic_mask
        return results

    def __repr__(self):
194
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
195
196
197
198
199
200
201
        repr_str = self.__class__.__name__
        repr_str += '(valid_cat_ids={})'.format(self.valid_cat_ids)
        return repr_str


@PIPELINES.register_module()
class NormalizePointsColor(object):
zhangwenwei's avatar
zhangwenwei committed
202
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
203
204
205
206
207
208
209
210
211

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

    def __init__(self, color_mean):
        self.color_mean = color_mean

    def __call__(self, results):
212
213
214
215
216
217
218
219
220
221
222
        """Call function to normalize color of points.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
            dict: The result dict containing the normalized points. \
                Updated key and value are described below.

                - points (np.ndarray): Points after color normalization.
        """
wuyuefeng's avatar
wuyuefeng committed
223
224
225
226
227
228
229
230
        points = results['points']
        assert points.shape[1] >= 6,\
            f'Expect points have channel >=6, got {points.shape[1]}'
        points[:, 3:6] = points[:, 3:6] - np.array(self.color_mean) / 256.0
        results['points'] = points
        return results

    def __repr__(self):
231
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
232
233
234
235
236
237
238
239
240
241
242
243
244
        repr_str = self.__class__.__name__
        repr_str += '(color_mean={})'.format(self.color_mean)
        return repr_str


@PIPELINES.register_module()
class LoadPointsFromFile(object):
    """Load Points From File.

    Load sunrgbd and scannet points from file.

    Args:
        load_dim (int): The dimension of the loaded points.
liyinhao's avatar
liyinhao committed
245
            Defaults to 6.
wuyuefeng's avatar
wuyuefeng committed
246
        use_dim (list[int]): Which dimensions of the points to be used.
liyinhao's avatar
liyinhao committed
247
248
249
            Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
            or use_dim=[0, 1, 2, 3] to use the intensity dimension.
        shift_height (bool): Whether to use shifted height. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
250
251
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
252
            for more details. Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    """

    def __init__(self,
                 load_dim=6,
                 use_dim=[0, 1, 2],
                 shift_height=False,
                 file_client_args=dict(backend='disk')):
        self.shift_height = shift_height
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'

        self.load_dim = load_dim
        self.use_dim = use_dim
        self.file_client_args = file_client_args.copy()
        self.file_client = None

    def _load_points(self, pts_filename):
272
273
274
275
276
277
278
279
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points

    def __call__(self, results):
294
295
296
297
298
299
300
301
302
303
304
        """Call function to load points data from file.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
            dict: The result dict containing the point clouds data. \
                Added key and value are described below.

                - points (np.ndarray): Point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
305
306
307
308
309
310
311
312
313
314
315
316
317
        pts_filename = results['pts_filename']
        points = self._load_points(pts_filename)
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
            points = np.concatenate([points, np.expand_dims(height, 1)], 1)
        results['points'] = points
        return results

    def __repr__(self):
318
        """str: Return a string that describes the module."""
liyinhao's avatar
liyinhao committed
319
320
321
322
323
        repr_str = self.__class__.__name__ + '('
        repr_str += 'shift_height={}, '.format(self.shift_height)
        repr_str += 'file_client_args={}), '.format(self.file_client_args)
        repr_str += 'load_dim={}, '.format(self.load_dim)
        repr_str += 'use_dim={})'.format(self.use_dim)
wuyuefeng's avatar
wuyuefeng committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        return repr_str


@PIPELINES.register_module()
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

    Args:
        with_bbox_3d (bool, optional): Whether to load 3D boxes.
            Defaults to True.
        with_label_3d (bool, optional): Whether to load 3D labels.
            Defaults to True.
        with_mask_3d (bool, optional): Whether to load 3D instance masks.
            for points. Defaults to False.
        with_seg_3d (bool, optional): Whether to load 3D semantic masks.
            for points. Defaults to False.
        with_bbox (bool, optional): Whether to load 2D boxes.
            Defaults to False.
        with_label (bool, optional): Whether to load 2D labels.
            Defaults to False.
        with_mask (bool, optional): Whether to load 2D instance masks.
            Defaults to False.
        with_seg (bool, optional): Whether to load 2D semantic masks.
            Defaults to False.
        poly2mask (bool, optional): Whether to convert polygon annotations
            to bitmasks. Defaults to True.
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

    def __init__(self,
                 with_bbox_3d=True,
                 with_label_3d=True,
                 with_mask_3d=False,
                 with_seg_3d=False,
                 with_bbox=False,
                 with_label=False,
                 with_mask=False,
                 with_seg=False,
                 poly2mask=True,
                 file_client_args=dict(backend='disk')):
        super().__init__(
            with_bbox,
            with_label,
            with_mask,
            with_seg,
            poly2mask,
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
        self.with_label_3d = with_label_3d
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d

    def _load_bboxes_3d(self, results):
382
383
384
385
386
387
388
389
        """Private function to load 3D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
390
391
392
393
394
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        results['bbox3d_fields'].append('gt_bboxes_3d')
        return results

    def _load_labels_3d(self, results):
395
396
397
398
399
400
401
402
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
403
404
405
406
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

    def _load_masks_3d(self, results):
407
408
409
410
411
412
413
414
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int)
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(
                pts_instance_mask_path, dtype=np.long)

        results['pts_instance_mask'] = pts_instance_mask
        results['pts_mask_fields'].append('pts_instance_mask')
        return results

    def _load_semantic_seg_3d(self, results):
432
433
434
435
436
437
438
439
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
            pts_semantic_mask = np.frombuffer(mask_bytes, dtype=np.int).copy()
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(
                pts_semantic_mask_path, dtype=np.long)

        results['pts_semantic_mask'] = pts_semantic_mask
        results['pts_seg_fields'].append('pts_semantic_mask')
        return results

    def __call__(self, results):
458
459
460
461
462
463
464
465
466
        """Call function to load multiple types annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box, label, mask and
                semantic segmentation annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        results = super().__call__(results)
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
            if results is None:
                return None
        if self.with_label_3d:
            results = self._load_labels_3d(results)
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

    def __repr__(self):
482
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
483
484
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
liyinhao's avatar
liyinhao committed
485
486
487
488
489
490
491
492
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
        repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
        repr_str += f'{indent_str}with_label={self.with_label}, '
        repr_str += f'{indent_str}with_mask={self.with_mask}, '
        repr_str += f'{indent_str}with_seg={self.with_seg}, '
wuyuefeng's avatar
wuyuefeng committed
493
494
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str