visualization_hook.py 7.12 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import warnings
from typing import Optional, Sequence

import mmcv
ChaimZhu's avatar
ChaimZhu committed
7
import numpy as np
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from mmengine.fileio import FileClient
from mmengine.hooks import Hook
from mmengine.runner import Runner
from mmengine.utils import mkdir_or_exist
from mmengine.visualization import Visualizer

from mmdet3d.registry import HOOKS
from mmdet3d.structures import Det3DDataSample


@HOOKS.register_module()
class Det3DVisualizationHook(Hook):
    """Detection Visualization Hook. Used to visualize validation and testing
    process prediction results.

    In the testing phase:

    1. If ``show`` is True, it means that only the prediction results are
        visualized without storing data, so ``vis_backends`` needs to
        be excluded.
    2. If ``test_out_dir`` is specified, it means that the prediction results
        need to be saved to ``test_out_dir``. In order to avoid vis_backends
        also storing data, so ``vis_backends`` needs to be excluded.
    3. ``vis_backends`` takes effect if the user does not specify ``show``
        and `test_out_dir``. You can set ``vis_backends`` to WandbVisBackend or
        TensorboardVisBackend to store the prediction result in Wandb or
        Tensorboard.

    Args:
        draw (bool): whether to draw prediction results. If it is False,
            it means that no drawing will be done. Defaults to False.
        interval (int): The interval of visualization. Defaults to 50.
        score_thr (float): The threshold to visualize the bboxes
            and masks. Defaults to 0.3.
        show (bool): Whether to display the drawn image. Default to False.
        wait_time (float): The interval of show (s). Defaults to 0.
        test_out_dir (str, optional): directory where painted images
            will be saved in testing process.
        file_client_args (dict): Arguments to instantiate a FileClient.
            See :class:`mmengine.fileio.FileClient` for details.
            Defaults to ``dict(backend='disk')``.
    """

    def __init__(self,
                 draw: bool = False,
                 interval: int = 50,
                 score_thr: float = 0.3,
                 show: bool = False,
                 wait_time: float = 0.,
                 test_out_dir: Optional[str] = None,
                 file_client_args: dict = dict(backend='disk')):
        self._visualizer: Visualizer = Visualizer.get_current_instance()
        self.interval = interval
        self.score_thr = score_thr
        self.show = show
        if self.show:
            # No need to think about vis backends.
            self._visualizer._vis_backends = {}
            warnings.warn('The show is True, it means that only '
                          'the prediction results are visualized '
                          'without storing data, so vis_backends '
                          'needs to be excluded.')

        self.wait_time = wait_time
        self.file_client_args = file_client_args.copy()
        self.file_client = None
        self.draw = draw
        self.test_out_dir = test_out_dir
        self._test_index = 0

    def after_val_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
                       outputs: Sequence[Det3DDataSample]) -> None:
        """Run after every ``self.interval`` validation iterations.

        Args:
            runner (:obj:`Runner`): The runner of the validation process.
            batch_idx (int): The index of the current batch in the val loop.
            data_batch (dict): Data from dataloader.
            outputs (Sequence[:obj:`DetDataSample`]]): A batch of data samples
                that contain annotations and predictions.
        """
        if self.draw is False:
            return

        if self.file_client is None:
            self.file_client = FileClient(**self.file_client_args)

        # There is no guarantee that the same batch of images
        # is visualized for each evaluation.
        total_curr_iter = runner.iter + batch_idx

ChaimZhu's avatar
ChaimZhu committed
99
100
        data_input = dict()

101
        # Visualize only the first data
ChaimZhu's avatar
ChaimZhu committed
102
103
104
105
106
107
108
109
110
111
112
113
114
        if 'img_path' in outputs[0]:
            img_path = outputs[0].img_path
            img_bytes = self.file_client.get(img_path)
            img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
            data_input['img'] = img

        if 'lidar_path' in outputs[0]:
            lidar_path = outputs[0].lidar_path
            num_pts_feats = outputs[0].num_pts_feats
            pts_bytes = self.file_client.get(lidar_path)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
            points = points.reshape(-1, num_pts_feats)
            data_input['points'] = points
115
116
117

        if total_curr_iter % self.interval == 0:
            self._visualizer.add_datasample(
ChaimZhu's avatar
ChaimZhu committed
118
119
                'val sample',
                data_input,
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
                data_sample=outputs[0],
                show=self.show,
                wait_time=self.wait_time,
                pred_score_thr=self.score_thr,
                step=total_curr_iter)

    def after_test_iter(self, runner: Runner, batch_idx: int, data_batch: dict,
                        outputs: Sequence[Det3DDataSample]) -> None:
        """Run after every testing iterations.

        Args:
            runner (:obj:`Runner`): The runner of the testing process.
            batch_idx (int): The index of the current batch in the val loop.
            data_batch (dict): Data from dataloader.
            outputs (Sequence[:obj:`DetDataSample`]): A batch of data samples
                that contain annotations and predictions.
        """
        if self.draw is False:
            return

        if self.test_out_dir is not None:
            self.test_out_dir = osp.join(runner.work_dir, runner.timestamp,
                                         self.test_out_dir)
            mkdir_or_exist(self.test_out_dir)

        if self.file_client is None:
            self.file_client = FileClient(**self.file_client_args)

        for data_sample in outputs:
            self._test_index += 1

ChaimZhu's avatar
ChaimZhu committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            data_input = dict()
            if 'img_path' in data_sample:
                img_path = data_sample.img_path
                img_bytes = self.file_client.get(img_path)
                img = mmcv.imfrombytes(img_bytes, channel_order='rgb')
                data_input['img'] = img

            if 'lidar_path' in data_sample:
                lidar_path = data_sample.lidar_path
                num_pts_feats = data_sample.num_pts_feats
                pts_bytes = self.file_client.get(lidar_path)
                points = np.frombuffer(pts_bytes, dtype=np.float32)
                points = points.reshape(-1, num_pts_feats)
                data_input['points'] = points
165
166
167

            out_file = None
            if self.test_out_dir is not None:
168
169
                out_file = osp.basename(img_path)
                out_file = osp.join(self.test_out_dir, out_file)
170
171

            self._visualizer.add_datasample(
ChaimZhu's avatar
ChaimZhu committed
172
173
                'test sample',
                data_input,
174
175
176
177
178
179
                data_sample=data_sample,
                show=self.show,
                wait_time=self.wait_time,
                pred_score_thr=self.score_thr,
                out_file=out_file,
                step=self._test_index)